2021-11-18 16:38:29 +02:00

798 lines
29 KiB
Nim

# beacon_chain
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import std/[tables, heapqueue]
import chronos
export tables
type
PeerType* = enum
Incoming, Outgoing
PeerFlags = enum
Acquired, DeleteOnRelease
EventType = enum
NotEmptyEvent, NotFullEvent
PeerStatus* = enum
Success, ## Peer was successfully added to PeerPool.
DuplicateError, ## Peer is already present in PeerPool.
NoSpaceError, ## There no space for the peer in PeerPool.
LowScoreError, ## Peer has too low score.
DeadPeerError ## Peer is already dead.
PeerItem[T] = object
data: T
peerType: PeerType
flags: set[PeerFlags]
index: int
future: Future[void]
PeerIndex = object
data: int
cmp: proc(a, b: PeerIndex): bool {.gcsafe, raises: [Defect].}
PeerScoreCheckCallback*[T] = proc(peer: T): bool {.gcsafe, raises: [Defect].}
PeerCounterCallback* = proc() {.gcsafe, raises: [Defect].}
PeerOnDeleteCallback*[T] = proc(peer: T) {.gcsafe, raises: [Defect].}
PeerPool*[A, B] = ref object
incNotEmptyEvent*: AsyncEvent
outNotEmptyEvent*: AsyncEvent
incNotFullEvent*: AsyncEvent
outNotFullEvent*: AsyncEvent
incQueue: HeapQueue[PeerIndex]
outQueue: HeapQueue[PeerIndex]
registry: Table[B, PeerIndex]
storage: seq[PeerItem[A]]
cmp: proc(a, b: PeerIndex): bool {.gcsafe, raises: [Defect].}
scoreCheck: PeerScoreCheckCallback[A]
onDeletePeer: PeerOnDeleteCallback[A]
peerCounter: PeerCounterCallback
maxPeersCount: int
maxIncPeersCount: int
maxOutPeersCount: int
curIncPeersCount: int
curOutPeersCount: int
acqIncPeersCount: int
acqOutPeersCount: int
PeerPoolError* = object of CatchableError
proc `<`*(a, b: PeerIndex): bool =
## PeerIndex ``a`` holds reference to ``cmp()`` procedure which has captured
## PeerPool instance.
a.cmp(b, a)
proc fireNotEmptyEvent[A, B](pool: PeerPool[A, B],
item: PeerItem[A]) =
case item.peerType:
of PeerType.Incoming:
pool.incNotEmptyEvent.fire()
of PeerType.Outgoing:
pool.outNotEmptyEvent.fire()
proc fireNotFullEvent[A, B](pool: PeerPool[A, B],
item: PeerItem[A]) =
case item.peerType:
of PeerType.Incoming:
pool.incNotFullEvent.fire()
of PeerType.Outgoing:
pool.outNotFullEvent.fire()
iterator pairs*[A, B](pool: PeerPool[A, B]): (B, A) =
for peerId, peerIdx in pool.registry:
yield (peerId, pool.storage[peerIdx.data].data)
template incomingEvent(eventType: EventType): AsyncEvent =
case eventType
of EventType.NotEmptyEvent:
pool.incNotEmptyEvent
of EventType.NotFullEvent:
pool.incNotFullEvent
template outgoingEvent(eventType: EventType): AsyncEvent =
case eventType
of EventType.NotEmptyEvent:
pool.outNotEmptyEvent
of EventType.NotFullEvent:
pool.outNotFullEvent
proc waitForEvent[A, B](pool: PeerPool[A, B], eventType: EventType,
filter: set[PeerType]) {.async.} =
if filter == {PeerType.Incoming, PeerType.Outgoing} or filter == {}:
var fut1 = incomingEvent(eventType).wait()
var fut2 = outgoingEvent(eventType).wait()
try:
discard await one(fut1, fut2)
if fut1.finished:
if not(fut2.finished):
fut2.cancel()
incomingEvent(eventType).clear()
else:
if not(fut1.finished):
fut1.cancel()
outgoingEvent(eventType).clear()
except CancelledError as exc:
if not(fut1.finished):
fut1.cancel()
if not(fut2.finished):
fut2.cancel()
raise exc
elif PeerType.Incoming in filter:
await incomingEvent(eventType).wait()
incomingEvent(eventType).clear()
elif PeerType.Outgoing in filter:
await outgoingEvent(eventType).wait()
outgoingEvent(eventType).clear()
proc waitNotEmptyEvent[A, B](pool: PeerPool[A, B],
filter: set[PeerType]): Future[void] =
pool.waitForEvent(EventType.NotEmptyEvent, filter)
proc waitNotFullEvent[A, B](pool: PeerPool[A, B],
filter: set[PeerType]): Future[void] =
pool.waitForEvent(EventType.NotFullEvent, filter)
proc newPeerPool*[A, B](maxPeers = -1, maxIncomingPeers = -1,
maxOutgoingPeers = -1,
scoreCheckCb: PeerScoreCheckCallback[A] = nil,
peerCounterCb: PeerCounterCallback = nil,
onDeleteCb: PeerOnDeleteCallback[A] = nil): PeerPool[A, B] =
## Create new PeerPool.
##
## ``maxPeers`` - maximum number of peers allowed. All the peers which
## exceeds this number will be rejected (``addPeer()`` procedure will return
## ``false``). By default this number is infinite.
##
## ``maxIncomingPeers`` - maximum number of incoming peers allowed. All the
## incoming peers exceeds this number will be rejected. By default this
## number is infinite.
##
## ``maxOutgoingPeers`` - maximum number of outgoing peers allowed. All the
## outgoing peers exceeds this number will be rejected. By default this
## number if infinite.
##
## ``scoreCheckCb`` - callback which will be called for all released peers.
## If callback procedure returns ``false`` peer will be removed from
## PeerPool.
##
## ``peerCountCb`` - callback to be called when number of peers in PeerPool
## has been changed.
##
## ``onDeleteCb`` - callback to be called when peer is leaving PeerPool.
##
## Please note, that if ``maxPeers`` is positive non-zero value, then equation
## ``maxPeers >= maxIncomingPeers + maxOutgoingPeers`` must be ``true``.
var res = PeerPool[A, B]()
if maxPeers != -1:
doAssert(maxPeers >= maxIncomingPeers + maxOutgoingPeers)
res.maxPeersCount = if maxPeers < 0: high(int) else: maxPeers
res.maxIncPeersCount =
if maxIncomingPeers < 0:
high(int)
else:
maxIncomingPeers
res.maxOutPeersCount =
if maxOutgoingPeers < 0:
high(int)
else:
maxOutgoingPeers
res.incNotEmptyEvent = newAsyncEvent()
res.outNotEmptyEvent = newAsyncEvent()
res.incNotFullEvent = newAsyncEvent()
res.outNotFullEvent = newAsyncEvent()
res.incQueue = initHeapQueue[PeerIndex]()
res.outQueue = initHeapQueue[PeerIndex]()
res.registry = initTable[B, PeerIndex]()
res.scoreCheck = scoreCheckCb
res.peerCounter = peerCounterCb
res.onDeletePeer = onDeleteCb
res.storage = newSeq[PeerItem[A]]()
proc peerCmp(a, b: PeerIndex): bool {.closure, gcsafe.} =
let p1 = res.storage[a.data].data
let p2 = res.storage[b.data].data
p1 < p2
res.cmp = peerCmp
res
proc len*[A, B](pool: PeerPool[A, B]): int =
## Returns number of registered peers in PeerPool ``pool``. This number
## includes all the peers (acquired and available).
len(pool.registry)
proc lenCurrent*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): int {.inline.} =
## Returns number of registered peers in PeerPool ``pool`` which satisfies
## filter ``filter``.
(if PeerType.Incoming in filter: pool.curIncPeersCount else: 0) +
(if PeerType.Outgoing in filter: pool.curOutPeersCount else: 0)
proc lenAvailable*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): int {.inline.} =
## Returns number of available peers in PeerPool ``pool`` which satisfies
## filter ``filter``.
(if PeerType.Incoming in filter: len(pool.incQueue) else: 0) +
(if PeerType.Outgoing in filter: len(pool.outQueue) else: 0)
proc lenAcquired*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): int {.inline.} =
## Returns number of acquired peers in PeerPool ``pool`` which satisifies
## filter ``filter``.
(if PeerType.Incoming in filter: pool.acqIncPeersCount else: 0) +
(if PeerType.Outgoing in filter: pool.acqOutPeersCount else: 0)
proc lenSpace*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): int {.inline.} =
## Returns number of available space for peers in PeerPool ``pool`` which
## satisfies filter ``filter``.
let curPeersCount = pool.curIncPeersCount + pool.curOutPeersCount
let totalSpace = pool.maxPeersCount - curPeersCount
let incoming = min(totalSpace, pool.maxIncPeersCount - pool.curIncPeersCount)
let outgoing = min(totalSpace, pool.maxOutPeersCount - pool.curOutPeersCount)
if filter == {PeerType.Incoming, PeerType.Outgoing}:
# To avoid overflow check we need to check by ourself.
if uint64(incoming) + uint64(outgoing) > uint64(high(int)):
min(totalSpace, high(int))
else:
min(totalSpace, incoming + outgoing)
elif PeerType.Incoming in filter:
incoming
else:
outgoing
proc shortLogAvailable*[A, B](pool: PeerPool[A, B]): string =
$len(pool.incQueue) & "/" & $len(pool.outQueue)
proc shortLogAcquired*[A, B](pool: PeerPool[A, B]): string =
$pool.acqIncPeersCount & "/" & $pool.acqOutPeersCount
proc shortLogSpace*[A, B](pool: PeerPool[A, B]): string =
$pool.lenSpace({PeerType.Incoming}) & "/" &
$pool.lenSpace({PeerType.Outgoing})
proc shortLogCurrent*[A, B](pool: PeerPool[A, B]): string =
$pool.curIncPeersCount & "/" & $pool.curOutPeersCount
proc checkPeerScore*[A, B](pool: PeerPool[A, B], peer: A): bool {.inline.} =
## Returns ``true`` if peer passing score check.
if not(isNil(pool.scoreCheck)):
pool.scoreCheck(peer)
else:
true
proc peerCountChanged[A, B](pool: PeerPool[A, B]) =
## Call callback when number of peers changed.
if not(isNil(pool.peerCounter)):
pool.peerCounter()
proc peerDeleted[A, B](pool: PeerPool[A, B], peer: A) =
## Call callback when peer is leaving PeerPool.
if not(isNil(pool.onDeletePeer)):
pool.onDeletePeer(peer)
proc deletePeer*[A, B](pool: PeerPool[A, B], peer: A, force = false): bool =
## Remove ``peer`` from PeerPool ``pool``.
##
## Deletion occurs immediately only if peer is available, otherwise it will
## be deleted only when peer will be released. You can change this behavior
## with ``force`` option.
mixin getKey
let key = getKey(peer)
if pool.registry.hasKey(key):
let pindex = try: pool.registry[key].data
except KeyError: raiseAssert "checked with hasKey"
var item = addr(pool.storage[pindex])
if (PeerFlags.Acquired in item[].flags):
if not(force):
item[].flags.incl(PeerFlags.DeleteOnRelease)
else:
if item[].peerType == PeerType.Incoming:
dec(pool.curIncPeersCount)
dec(pool.acqIncPeersCount)
elif item[].peerType == PeerType.Outgoing:
dec(pool.curOutPeersCount)
dec(pool.acqOutPeersCount)
let fut = item[].future
# Indicate that we have an empty space
pool.fireNotFullEvent(item[])
# Cleanup storage with default item, and removing key from hashtable.
pool.storage[pindex] = PeerItem[A]()
pool.registry.del(key)
pool.peerDeleted(peer)
pool.peerCountChanged()
# Indicate that peer was deleted
fut.complete()
else:
if item[].peerType == PeerType.Incoming:
# If peer is available, then its copy present in heapqueue, so we need
# to remove it.
for i in 0 ..< len(pool.incQueue):
if pool.incQueue[i].data == pindex:
pool.incQueue.del(i)
break
dec(pool.curIncPeersCount)
elif item[].peerType == PeerType.Outgoing:
# If peer is available, then its copy present in heapqueue, so we need
# to remove it.
for i in 0 ..< len(pool.outQueue):
if pool.outQueue[i].data == pindex:
pool.outQueue.del(i)
break
dec(pool.curOutPeersCount)
let fut = item[].future
# Indicate that we have an empty space
pool.fireNotFullEvent(item[])
# Cleanup storage with default item, and removing key from hashtable.
pool.storage[pindex] = PeerItem[A]()
pool.registry.del(key)
pool.peerDeleted(peer)
pool.peerCountChanged()
# Indicate that peer was deleted
fut.complete()
true
else:
false
proc joinPeer*[A, B](pool: PeerPool[A, B], peer: A): Future[void] =
## This procedure will only when peer ``peer`` finally leaves PeerPool
## ``pool``.
mixin getKey
var retFuture = newFuture[void]("peerpool.joinPeer")
var future: Future[void]
proc continuation(udata: pointer) {.gcsafe.} =
if not(retFuture.finished()):
retFuture.complete()
proc cancellation(udata: pointer) {.gcsafe.} =
if not(isNil(future)):
future.removeCallback(continuation)
let key = getKey(peer)
pool.registry.withValue(key, pindex):
var item = addr(pool.storage[pindex[].data])
future = item[].future
# If peer is still in PeerPool, then item[].future should not be finished.
doAssert(not(future.finished()))
future.addCallback(continuation)
retFuture.cancelCallback = cancellation
do:
# If there no such peer in PeerPool anymore, its possible that
# PeerItem.future's callbacks is not yet processed, so we going to complete
# retFuture only in next `poll()` call.
callSoon(continuation, cast[pointer](retFuture))
retFuture
proc addPeerImpl[A, B](pool: PeerPool[A, B], peer: A, peerKey: B,
peerType: PeerType) =
mixin getFuture
proc onPeerClosed(udata: pointer) {.gcsafe, raises: [Defect].} =
discard pool.deletePeer(peer)
let item = PeerItem[A](data: peer, peerType: peerType,
index: len(pool.storage),
future: newFuture[void]("peerpool.peer"))
pool.storage.add(item)
var pitem = addr(pool.storage[^1])
let pindex = PeerIndex(data: item.index, cmp: pool.cmp)
pool.registry[peerKey] = pindex
pitem[].data.getFuture().addCallback(onPeerClosed)
if peerType == PeerType.Incoming:
inc(pool.curIncPeersCount)
pool.incQueue.push(pindex)
pool.incNotEmptyEvent.fire()
elif peerType == PeerType.Outgoing:
inc(pool.curOutPeersCount)
pool.outQueue.push(pindex)
pool.outNotEmptyEvent.fire()
pool.peerCountChanged()
proc checkPeer*[A, B](pool: PeerPool[A, B], peer: A): PeerStatus {.inline.} =
## Checks if peer could be added to PeerPool, e.g. it has:
##
## * Positive value of peer's score - (PeerStatus.LowScoreError)
## * Peer's key is not present in PeerPool - (PeerStatus.DuplicateError)
## * Peer's lifetime future is not finished yet - (PeerStatus.DeadPeerError)
##
## If peer could be added to PeerPool procedure returns (PeerStatus.Success)
mixin getKey, isAlive
if not(pool.checkPeerScore(peer)):
PeerStatus.LowScoreError
else:
let peerKey = getKey(peer)
if not(pool.registry.hasKey(peerKey)):
if peer.isAlive():
PeerStatus.Success
else:
PeerStatus.DeadPeerError
else:
PeerStatus.DuplicateError
proc addPeerNoWait*[A, B](pool: PeerPool[A, B],
peer: A, peerType: PeerType): PeerStatus =
## Add peer ``peer`` of type ``peerType`` to PeerPool ``pool``.
##
## Procedure returns ``PeerStatus``
## * if ``peer`` is already closed - (PeerStatus.DeadPeerError)
## * if ``pool`` already has peer ``peer`` - (PeerStatus.DuplicateError)
## * if ``pool`` currently has a maximum of peers.
## (PeerStatus.NoSpaceError)
## * if ``pool`` currently has a maximum of `Incoming` or `Outgoing` peers.
## (PeerStatus.NoSpaceError)
##
## Procedure returns (PeerStatus.Success) on success.
mixin getKey
let res = pool.checkPeer(peer)
if res != PeerStatus.Success:
res
else:
let peerKey = peer.getKey()
case peerType:
of PeerType.Incoming:
if pool.lenSpace({PeerType.Incoming}) > 0:
pool.addPeerImpl(peer, peerKey, peerType)
PeerStatus.Success
else:
PeerStatus.NoSpaceError
of PeerType.Outgoing:
if pool.lenSpace({PeerType.Outgoing}) > 0:
pool.addPeerImpl(peer, peerKey, peerType)
PeerStatus.Success
else:
PeerStatus.NoSpaceError
proc getPeerSpaceMask[A, B](pool: PeerPool[A, B],
peerType: PeerType): set[PeerType] {.inline.} =
## This procedure returns set of events which you need to wait to get empty
## space for peer type ``peerType``. This set can be used for call to
## ``waitNotFullEvent()``.
case peerType:
of PeerType.Incoming:
if pool.maxIncPeersCount >= pool.maxPeersCount:
# If maximum number of `incoming` peers is only limited by
# maximum number of peers, then we could wait for both events.
# It means that we do not care about what peer will left pool.
{PeerType.Incoming, PeerType.Outgoing}
else:
# Otherwise we could wait only for `incoming` event
{PeerType.Incoming}
of PeerType.Outgoing:
if pool.maxOutPeersCount >= pool.maxPeersCount:
# If maximum number of `outgoing` peers is only limited by
# maximum number of peers, then we could wait for both events.
# It means that we do not care about what peer will left pool.
{PeerType.Incoming, PeerType.Outgoing}
else:
# Otherwise we could wait only for `outgoing` event
{PeerType.Outgoing}
proc waitForEmptySpace*[A, B](pool: PeerPool[A, B],
peerType: PeerType) {.async.} =
## This procedure will block until ``pool`` will have an empty space for peer
## of type ``peerType``.
let mask = pool.getPeerSpaceMask(peerType)
while pool.lenSpace({peerType}) == 0:
await pool.waitNotFullEvent(mask)
proc addPeer*[A, B](pool: PeerPool[A, B],
peer: A, peerType: PeerType): Future[PeerStatus] {.async.} =
## Add peer ``peer`` of type ``peerType`` to PeerPool ``pool``.
##
## This procedure will wait for an empty space in PeerPool ``pool``, if
## PeerPool ``pool`` is full.
##
## Procedure returns ``PeerStatus``
## * if ``peer`` is already closed - (PeerStatus.DeadPeerError)
## * if ``pool`` already has peer ``peer`` - (PeerStatus.DuplicateError)
##
## Procedure returns (PeerStatus.Success) on success.
mixin getKey
let res =
block:
let res1 = pool.checkPeer(peer)
if res1 != PeerStatus.Success:
res1
else:
let mask = pool.getPeerSpaceMask(peerType)
# We going to block here until ``pool`` will not have free space,
# for our type of peer.
while pool.lenSpace({peerType}) == 0:
await pool.waitNotFullEvent(mask)
# Because we could wait for a long time we need to check peer one more
# time to avoid race condition.
let res2 = pool.checkPeer(peer)
if res2 == PeerStatus.Success:
let peerKey = peer.getKey()
pool.addPeerImpl(peer, peerKey, peerType)
PeerStatus.Success
else:
res2
return res
proc acquireItemImpl[A, B](pool: PeerPool[A, B],
filter: set[PeerType]): A {.inline.} =
doAssert((len(pool.outQueue) > 0) or (len(pool.incQueue) > 0))
let pindex =
if filter == {PeerType.Incoming, PeerType.Outgoing}:
if len(pool.outQueue) > 0 and len(pool.incQueue) > 0:
# Don't think `<` is actually `<` here.
if pool.incQueue[0] < pool.outQueue[0]:
inc(pool.acqIncPeersCount)
let item = pool.incQueue.pop()
item.data
else:
inc(pool.acqOutPeersCount)
let item = pool.outQueue.pop()
item.data
else:
if len(pool.outQueue) > 0:
inc(pool.acqOutPeersCount)
let item = pool.outQueue.pop()
item.data
else:
inc(pool.acqIncPeersCount)
let item = pool.incQueue.pop()
item.data
else:
if PeerType.Outgoing in filter:
inc(pool.acqOutPeersCount)
let item = pool.outQueue.pop()
item.data
else:
inc(pool.acqIncPeersCount)
let item = pool.incQueue.pop()
item.data
var pitem = addr(pool.storage[pindex])
doAssert(PeerFlags.Acquired notin pitem[].flags)
pitem[].flags.incl(PeerFlags.Acquired)
pitem[].data
proc acquire*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): Future[A] {.async.} =
## Acquire peer from PeerPool ``pool``, which match the filter ``filter``.
mixin getKey
doAssert(filter != {}, "Filter must not be empty")
while true:
if pool.lenAvailable(filter) == 0:
await pool.waitNotEmptyEvent(filter)
else:
return pool.acquireItemImpl(filter)
proc acquireNoWait*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): A =
doAssert(filter != {}, "Filter must not be empty")
if pool.lenAvailable(filter) < 1:
raise newException(PeerPoolError, "Not enough peers in pool")
pool.acquireItemImpl(filter)
proc release*[A, B](pool: PeerPool[A, B], peer: A) =
## Release peer ``peer`` back to PeerPool ``pool``
mixin getKey
let key = getKey(peer)
var titem = pool.registry.getOrDefault(key, PeerIndex(data: -1))
if titem.data >= 0:
let pindex = titem.data
var item = addr(pool.storage[pindex])
if PeerFlags.Acquired in item[].flags:
if not(pool.checkPeerScore(peer)):
item[].flags.incl(DeleteOnRelease)
if PeerFlags.DeleteOnRelease in item[].flags:
# We do not care about result here because peer is present in registry
# and has all proper flags set.
discard pool.deletePeer(peer, force = true)
else:
item[].flags.excl(PeerFlags.Acquired)
case item[].peerType
of PeerType.Incoming:
pool.incQueue.push(titem)
dec(pool.acqIncPeersCount)
of PeerType.Outgoing:
pool.outQueue.push(titem)
dec(pool.acqOutPeersCount)
pool.fireNotEmptyEvent(item[])
proc release*[A, B](pool: PeerPool[A, B], peers: openArray[A]) {.inline.} =
## Release array of peers ``peers`` back to PeerPool ``pool``.
for item in peers:
pool.release(item)
proc acquire*[A, B](pool: PeerPool[A, B],
number: int,
filter = {PeerType.Incoming,
PeerType.Outgoing}): Future[seq[A]] {.async.} =
## Acquire ``number`` number of peers from PeerPool ``pool``, which match the
## filter ``filter``.
doAssert(filter != {}, "Filter must not be empty")
var peers = newSeq[A]()
try:
if number > 0:
while true:
if len(peers) >= number:
break
if pool.lenAvailable(filter) == 0:
await pool.waitNotEmptyEvent(filter)
else:
peers.add(pool.acquireItemImpl(filter))
except CancelledError as exc:
# If we got cancelled, we need to return all the acquired peers back to
# pool.
for item in peers:
pool.release(item)
peers.setLen(0)
raise exc
return peers
proc acquireNoWait*[A, B](pool: PeerPool[A, B],
number: int,
filter = {PeerType.Incoming,
PeerType.Outgoing}): seq[A] =
## Acquire ``number`` number of peers from PeerPool ``pool``, which match the
## filter ``filter``.
doAssert(filter != {}, "Filter must not be empty")
var peers = newSeq[A]()
if pool.lenAvailable(filter) < number:
raise newException(PeerPoolError, "Not enough peers in pool")
for i in 0 ..< number:
peers.add(pool.acquireItemImpl(filter))
return peers
proc acquireIncomingPeer*[A, B](pool: PeerPool[A, B]): Future[A] {.inline.} =
## Acquire single incoming peer from PeerPool ``pool``.
pool.acquire({PeerType.Incoming})
proc acquireOutgoingPeer*[A, B](pool: PeerPool[A, B]): Future[A] {.inline.} =
## Acquire single outgoing peer from PeerPool ``pool``.
pool.acquire({PeerType.Outgoing})
proc acquireIncomingPeers*[A, B](pool: PeerPool[A, B],
number: int): Future[seq[A]] {.inline.} =
## Acquire ``number`` number of incoming peers from PeerPool ``pool``.
pool.acquire(number, {PeerType.Incoming})
proc acquireOutgoingPeers*[A, B](pool: PeerPool[A, B],
number: int): Future[seq[A]] {.inline.} =
## Acquire ``number`` number of outgoing peers from PeerPool ``pool``.
pool.acquire(number, {PeerType.Outgoing})
iterator peers*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): A =
## Iterate over sorted list of peers.
##
## All peers will be sorted by equation `>`(Peer1, Peer2), so biggest values
## will be first.
var sorted = initHeapQueue[PeerIndex]()
for i in 0 ..< len(pool.storage):
if pool.storage[i].peerType in filter:
sorted.push(PeerIndex(data: i, cmp: pool.cmp))
while len(sorted) > 0:
let pindex = sorted.pop().data
yield pool.storage[pindex].data
iterator availablePeers*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): A =
## Iterate over sorted list of available peers.
##
## All peers will be sorted by equation `>`(Peer1, Peer2), so biggest values
## will be first.
var sorted = initHeapQueue[PeerIndex]()
for i in 0 ..< len(pool.storage):
if (PeerFlags.Acquired notin pool.storage[i].flags) and
(pool.storage[i].peerType in filter):
sorted.push(PeerIndex(data: i, cmp: pool.cmp))
while len(sorted) > 0:
let pindex = sorted.pop().data
yield pool.storage[pindex].data
iterator acquiredPeers*[A, B](pool: PeerPool[A, B],
filter = {PeerType.Incoming,
PeerType.Outgoing}): A =
## Iterate over sorted list of acquired (non-available) peers.
##
## All peers will be sorted by equation `>`(Peer1, Peer2), so biggest values
## will be first.
var sorted = initHeapQueue[PeerIndex]()
for i in 0 ..< len(pool.storage):
if (PeerFlags.Acquired in pool.storage[i].flags) and
(pool.storage[i].peerType in filter):
sorted.push(PeerIndex(data: i, cmp: pool.cmp))
while len(sorted) > 0:
let pindex = sorted.pop().data
yield pool.storage[pindex].data
proc `[]`*[A, B](pool: PeerPool[A, B], key: B): A {.inline, raises: [Defect, KeyError].} =
## Retrieve peer with key ``key`` from PeerPool ``pool``.
let pindex = pool.registry[key]
pool.storage[pindex.data]
proc `[]`*[A, B](pool: var PeerPool[A, B], key: B): var A {.inline, raises: [Defect, KeyError].} =
## Retrieve peer with key ``key`` from PeerPool ``pool``.
let pindex = pool.registry[key]
pool.storage[pindex.data].data
proc hasPeer*[A, B](pool: PeerPool[A, B], key: B): bool {.inline.} =
## Returns ``true`` if peer with ``key`` present in PeerPool ``pool``.
pool.registry.hasKey(key)
proc getOrDefault*[A, B](pool: PeerPool[A, B], key: B): A {.inline.} =
## Retrieves the peer from PeerPool ``pool`` using key ``key``. If peer is
## not present, default initialization value for type ``A`` is returned
## (e.g. 0 for any integer type).
let pindex = pool.registry.getOrDefault(key, PeerIndex(data: -1))
if pindex.data >= 0:
pool.storage[pindex.data].data
else:
A()
proc getOrDefault*[A, B](pool: PeerPool[A, B], key: B,
default: A): A {.inline.} =
## Retrieves the peer from PeerPool ``pool`` using key ``key``. If peer is
## not present, default value ``default`` is returned.
let pindex = pool.registry.getOrDefault(key, PeerIndex(data: -1))
if pindex.data >= 0:
pool.storage[pindex.data].data
else:
default
proc clear*[A, B](pool: PeerPool[A, B]) =
## Performs PeerPool's ``pool`` storage and counters reset.
pool.incQueue.clear()
pool.outQueue.clear()
pool.registry.clear()
for i in 0 ..< len(pool.storage):
pool.storage[i] = PeerItem[A]()
pool.storage.setLen(0)
pool.curIncPeersCount = 0
pool.curOutPeersCount = 0
pool.acqIncPeersCount = 0
pool.acqOutPeersCount = 0
proc clearSafe*[A, B](pool: PeerPool[A, B]) {.async.} =
## Performs "safe" clear. Safe means that it first acquires all the peers
## in PeerPool, and only after that it will reset storage.
var acquired = newSeq[A]()
while len(pool.registry) > len(acquired):
var peers = await pool.acquire(len(pool.registry) - len(acquired))
for item in peers:
acquired.add(item)
pool.clear()
proc setScoreCheck*[A, B](pool: PeerPool[A, B],
scoreCheckCb: PeerScoreCheckCallback[A]) =
## Sets ScoreCheck callback.
pool.scoreCheck = scoreCheckCb
proc setOnDeletePeer*[A, B](pool: PeerPool[A, B],
deletePeerCb: PeerOnDeleteCallback[A]) =
## Sets DeletePeer callback.
pool.onDeletePeer = deletePeerCb
proc setPeerCounter*[A, B](pool: PeerPool[A, B],
peerCounterCb: PeerCounterCallback) =
## Sets PeerCounter callback.
pool.peerCounter = peerCounterCb