182 lines
6.5 KiB
Nim
182 lines
6.5 KiB
Nim
# beacon_chain
|
|
# Copyright (c) 2018-2024 Status Research & Development GmbH
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
{.push raises: [].}
|
|
|
|
# Uncategorized helper functions from the spec
|
|
import
|
|
std/algorithm,
|
|
results,
|
|
eth/p2p/discoveryv5/[node],
|
|
./[helpers, digest],
|
|
./datatypes/[eip7594]
|
|
|
|
func sortedColumnIndices*(columnsPerSubnet: ColumnIndex,
|
|
subnetIds: HashSet[uint64]):
|
|
seq[ColumnIndex] =
|
|
var res: seq[ColumnIndex] = @[]
|
|
for i in 0'u64 ..< columnsPerSubnet:
|
|
for subnetId in subnetIds:
|
|
let index = DATA_COLUMN_SIDECAR_SUBNET_COUNT * i + subnetId
|
|
res.add(ColumnIndex(index))
|
|
res.sort
|
|
res
|
|
|
|
func sortedColumnIndexList*(columnsPerSubnet: ColumnIndex,
|
|
subnetIds: HashSet[uint64]):
|
|
List[ColumnIndex, NUMBER_OF_COLUMNS] =
|
|
var
|
|
res: seq[ColumnIndex]
|
|
for i in 0'u64 ..< columnsPerSubnet:
|
|
for subnetId in subnetIds:
|
|
let index = DATA_COLUMN_SIDECAR_SUBNET_COUNT * i + subnetId
|
|
res.add(ColumnIndex(index))
|
|
res.sort()
|
|
List[ColumnIndex, NUMBER_OF_COLUMNS].init(res)
|
|
|
|
func get_custody_column_subnets*(node_id: NodeId,
|
|
custody_subnet_count: uint64):
|
|
HashSet[uint64] =
|
|
|
|
# Decouples the custody subnet computation part from
|
|
# `get_custody_columns`, in order to later use this subnet list
|
|
# in order to maintain subscription to specific column subnets.
|
|
|
|
var
|
|
subnet_ids: HashSet[uint64]
|
|
current_id = node_id
|
|
|
|
while subnet_ids.lenu64 < custody_subnet_count:
|
|
var
|
|
hashed_bytes: array[8, byte]
|
|
|
|
let
|
|
current_id_bytes = current_id.toBytesLE()
|
|
hashed_current_id = eth2digest(current_id_bytes)
|
|
|
|
hashed_bytes[0..7] = hashed_current_id.data.toOpenArray(0,7)
|
|
let subnet_id = bytes_to_uint64(hashed_bytes) mod
|
|
DATA_COLUMN_SIDECAR_SUBNET_COUNT
|
|
|
|
subnet_ids.incl(subnet_id)
|
|
|
|
if current_id == UInt256.high.NodeId:
|
|
# Overflow prevention
|
|
current_id = NodeId(StUint[256].zero)
|
|
current_id += NodeId(StUint[256].one)
|
|
|
|
subnet_ids
|
|
|
|
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.5/specs/_features/eip7594/das-core.md#get_custody_columns
|
|
func get_custody_columns*(node_id: NodeId,
|
|
custody_subnet_count: uint64):
|
|
seq[ColumnIndex] =
|
|
let
|
|
subnet_ids =
|
|
get_custody_column_subnets(node_id, custody_subnet_count)
|
|
const
|
|
columns_per_subnet =
|
|
NUMBER_OF_COLUMNS div DATA_COLUMN_SIDECAR_SUBNET_COUNT
|
|
|
|
sortedColumnIndices(ColumnIndex(columns_per_subnet), subnet_ids)
|
|
|
|
func get_custody_column_list*(node_id: NodeId,
|
|
custody_subnet_count: uint64):
|
|
List[ColumnIndex, NUMBER_OF_COLUMNS] =
|
|
|
|
# Not in spec in the exact format, but it is useful in sorting custody columns
|
|
# before sending, data_column_sidecars_by_range requests
|
|
let
|
|
subnet_ids =
|
|
get_custody_column_subnets(node_id, custody_subnet_count)
|
|
const
|
|
columns_per_subnet =
|
|
NUMBER_OF_COLUMNS div DATA_COLUMN_SIDECAR_SUBNET_COUNT
|
|
|
|
sortedColumnIndexList(ColumnIndex(columns_per_subnet), subnet_ids)
|
|
|
|
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.5/specs/_features/eip7594/das-core.md#compute_matrix
|
|
proc compute_matrix*(blobs: seq[KzgBlob]): Result[seq[MatrixEntry], cstring] =
|
|
## `compute_matrix` helper demonstrates the relationship
|
|
## between blobs and the `MatrixEntries`
|
|
var extended_matrix: seq[MatrixEntry]
|
|
|
|
for blbIdx, blob in blobs.pairs:
|
|
let cellsAndProofs = computeCellsAndKzgProofs(blob)
|
|
if cellsAndProofs.isErr:
|
|
return err("Computing Extended Matrix: Issue computing cells and proofs")
|
|
|
|
for i in 0..<eip7594.CELLS_PER_EXT_BLOB:
|
|
extended_matrix.add(MatrixEntry(
|
|
cell: cellsAndProofs.get.cells[i],
|
|
kzg_proof: cellsAndProofs.get.proofs[i],
|
|
row_index: blbIdx.uint64,
|
|
column_index: i.uint64
|
|
))
|
|
|
|
ok(extended_matrix)
|
|
|
|
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.5/specs/_features/eip7594/das-core.md#recover_matrix
|
|
proc recover_matrix*(partial_matrix: seq[MatrixEntry],
|
|
blobCount: int):
|
|
Result[seq[MatrixEntry], cstring] =
|
|
## This helper demonstrates how to apply recover_cells_and_kzg_proofs
|
|
## The data structure for storing cells is implementation-dependent
|
|
var extended_matrix: seq[MatrixEntry]
|
|
for blob_index in 0..<blobCount:
|
|
var
|
|
cell_indices: seq[CellIndex]
|
|
cells: seq[Cell]
|
|
|
|
for e in partial_matrix:
|
|
if e.row_index == uint64(blob_index):
|
|
cell_indices.add(e.column_index)
|
|
cells.add(e.cell)
|
|
|
|
let recoveredCellsAndKzgProofs =
|
|
recoverCellsAndKzgProofs(cell_indices, cells)
|
|
if recoveredCellsAndKzgProofs.isErr:
|
|
return err("Issue in recovering cells and proofs")
|
|
|
|
for i in 0..<recoveredCellsAndKzgProofs.get.cells.len:
|
|
let
|
|
cell = recoveredCellsAndKzgProofs.get.cells[i]
|
|
proof = recoveredCellsAndKzgProofs.get.proofs[i]
|
|
extended_matrix.add(MatrixEntry(
|
|
cell: cell,
|
|
kzg_proof: proof,
|
|
row_index: blob_index.uint64,
|
|
column_index: i.uint64
|
|
))
|
|
|
|
ok(extended_matrix)
|
|
|
|
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.5/specs/_features/eip7594/peer-sampling.md#get_extended_sample_count
|
|
func get_extended_sample_count*(samples_per_slot: int,
|
|
allowed_failures: int):
|
|
int =
|
|
## `get_extended_sample_count` computes the number of samples we
|
|
## should query from peers, given the SAMPLES_PER_SLOT and
|
|
## the number of allowed failures
|
|
|
|
# If 50% of the columns are missing, we are able to reconstruct the data
|
|
# If 50% + 1 columns are missing, we cannot reconstruct the data
|
|
const worstCaseConditionCount = (NUMBER_OF_COLUMNS div 2) + 1
|
|
|
|
# Compute the false positive threshold
|
|
let falsePositiveThreshold =
|
|
hypergeom_cdf(0, NUMBER_OF_COLUMNS, worstCaseConditionCount, samples_per_slot)
|
|
|
|
# Finally, compute the extended sample count
|
|
for i in samples_per_slot .. NUMBER_OF_COLUMNS:
|
|
if hypergeom_cdf(
|
|
allowed_failures,
|
|
NUMBER_OF_COLUMNS,
|
|
worstCaseConditionCount, i) <= falsePositiveThreshold:
|
|
return i
|
|
|
|
NUMBER_OF_COLUMNS |