nimbus-eth2/beacon_chain/spec/crypto.nim

609 lines
21 KiB
Nim

# beacon_chain
# Copyright (c) 2018-2024 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [].}
# At the time of writing, the exact definitions of what should be used for
# cryptography in the spec is in flux, with sizes and test vectors still being
# hashed out. This layer helps isolate those chagnes.
# BLS signatures can be combined such that multiple signatures are aggregated.
# Each time a new signature is added, the corresponding public key must be
# added to the verification key as well - if a key signs twice, it must be added
# twice to the verification key. Aggregated signatures can be combined
# arbitrarily (like addition) as long as public keys are aggregated in the same
# way.
#
# In eth2, we use a single bit to record which keys have signed, thus we cannot
# combined overlapping aggregates - ie if we have an aggregate of signatures of
# A, B and C, and another with B, C and D, we cannot practically combine them
# even if in theory it is possible to allow this in BLS.
import
# Status
results,
stew/[bitseqs, endians2, objects, byteutils],
blscurve,
chronicles,
bearssl/rand,
json_serialization
from std/hashes import Hash
from std/sequtils import mapIt
from std/tables import Table, withValue, `[]=`
from nimcrypto/utils import burnMem
export results, blscurve, rand, json_serialization
# Type definitions
# ----------------------------------------------------------------------
const
RawSigSize* = 96
RawPubKeySize* = 48
UncompressedPubKeySize* = 96
# RawPrivKeySize* = 32 for BLST
type
ValidatorPubKey* = object ##\
## Compressed raw serialized key bytes - this type is used in so as to not
## eagerly load keys - deserialization is slow, as are equality checks -
## however, it is not guaranteed that the key is valid (except in some
## cases, like the database state)
##
## It must be 8-byte aligned because `hash(ValidatorPubKey)` just casts a
## ptr to one to a ptr to the other, so it needs a compatible alignment.
blob* {.align: 16.}: array[RawPubKeySize, byte]
UncompressedPubKey* = object
## Uncompressed variation of ValidatorPubKey - this type is faster to
## deserialize but doubles the storage footprint
blob* {.align: 16.}: array[UncompressedPubKeySize, byte]
CookedPubKey* = distinct blscurve.PublicKey ## Valid deserialized key
ValidatorSig* = object
blob* {.align: 16.}: array[RawSigSize, byte]
ValidatorPrivKey* = distinct blscurve.SecretKey
BlsCurveType* = ValidatorPrivKey | ValidatorPubKey | ValidatorSig
BlsResult*[T] = Result[T, cstring]
TrustedSig* = object
blob* {.align: 16.}: array[RawSigSize, byte]
SomeSig* = TrustedSig | ValidatorSig
CookedSig* = distinct blscurve.Signature ## \
## Cooked signatures are those that have been loaded successfully from a
## ValidatorSig and are used to avoid expensive reloading as well as error
## checking
SignatureShare* = object
sign*: blscurve.Signature
id*: uint32
SecretShare* = object
key*: ValidatorPrivKey
id*: uint32
export
AggregateSignature
# API
# ----------------------------------------------------------------------
# https://github.com/ethereum/consensus-specs/blob/v1.4.0-beta.6/specs/phase0/beacon-chain.md#bls-signatures
func toPubKey*(privkey: ValidatorPrivKey): CookedPubKey =
## Derive a public key from a private key
# Un-specced in either hash-to-curve or Eth2
var pubKey: blscurve.PublicKey
let ok = publicFromSecret(pubKey, SecretKey privkey)
doAssert ok, "The validator private key was a zero key. This should never happen."
CookedPubKey(pubKey)
template toRaw*(x: CookedPubKey): auto =
PublicKey(x).exportRaw()
template toUncompressed*(x: CookedPubKey): auto =
UncompressedPubKey(blob: PublicKey(x).exportUncompressed())
func toPubKey*(pubKey: CookedPubKey): ValidatorPubKey =
## Derive a public key from a private key
# Un-specced in either hash-to-curve or Eth2
ValidatorPubKey(blob: pubKey.toRaw())
func load*(v: ValidatorPubKey): Opt[CookedPubKey] =
## Parse signature blob - this may fail
var val: blscurve.PublicKey
if fromBytes(val, v.blob):
Opt.some CookedPubKey(val)
else:
Opt.none CookedPubKey
func load*(v: UncompressedPubKey): Opt[CookedPubKey] =
## Parse signature blob - this may fail
var val: blscurve.PublicKey
if fromBytes(val, v.blob):
Opt.some CookedPubKey(val)
else:
Opt.none CookedPubKey
func loadValid*(v: UncompressedPubKey | ValidatorPubKey): CookedPubKey {.noinit.} =
## Parse known-to-be-valid key - this is the case for any key that's passed
## parsing once and is the output of serialization, such as those keys we
## keep in the database or state.
var val: blscurve.PublicKey
let ok = fromBytesKnownOnCurve(val, v.blob)
doAssert ok, "Valid key no longer parses, data corrupt? " & $v
CookedPubKey(val)
proc loadWithCache*(v: ValidatorPubKey): Opt[CookedPubKey] =
## Parse public key blob - this may fail - this function uses a cache to
## avoid the expensive deserialization - for now, external public keys only
## come from deposits in blocks - when more sources are added, the memory
## usage of the cache should be considered
var cache {.threadvar.}: Table[typeof(v.blob), CookedPubKey]
# Try to get parse value from cache - if it's not in there, try to parse it -
# if that's not possible, it's broken
cache.withValue(v.blob, key) do:
return Opt.some key[]
do:
# Only valid keys are cached
let cooked = v.load()
if cooked.isSome():
cache[v.blob] = cooked.get()
return cooked
func load*(v: ValidatorSig): Opt[CookedSig] =
## Parse signature blob - this may fail
var parsed: blscurve.Signature
if fromBytes(parsed, v.blob):
Opt.some(CookedSig(parsed))
else:
Opt.none(CookedSig)
func init*(agg: var AggregatePublicKey, pubkey: CookedPubKey) {.inline.}=
## Initializes an aggregate signature context
agg.init(blscurve.PublicKey(pubkey))
func init*(T: type AggregatePublicKey, pubkey: CookedPubKey): T =
result.init(pubkey)
func aggregate*(agg: var AggregatePublicKey, pubkey: CookedPubKey) {.inline.}=
## Aggregate two valid Validator Public Keys
agg.aggregate(blscurve.PublicKey(pubkey))
func finish*(agg: AggregatePublicKey): CookedPubKey {.inline.} =
## Canonicalize an AggregatePublicKey into a signature
var pubkey: blscurve.PublicKey
pubkey.finish(agg)
CookedPubKey(pubkey)
func init*(agg: var AggregateSignature, sig: CookedSig) {.inline.}=
## Initializes an aggregate signature context
agg.init(blscurve.Signature(sig))
func init*(T: type AggregateSignature, sig: CookedSig): T =
result.init(sig)
func aggregate*(agg: var AggregateSignature, sig: CookedSig) {.inline.}=
## Aggregate two valid Validator Signatures
agg.aggregate(blscurve.Signature(sig))
func finish*(agg: AggregateSignature): CookedSig {.inline.} =
## Canonicalize an AggregateSignature into a signature
var sig: blscurve.Signature
sig.finish(agg)
CookedSig(sig)
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.8/specs/phase0/beacon-chain.md#bls-signatures
func blsVerify*(
pubkey: CookedPubKey, message: openArray[byte],
signature: CookedSig): bool =
## Check that a signature is valid for a message
## under the provided public key.
## returns `true` if the signature is valid, `false` otherwise.
##
## The proof-of-possession MUST be verified before calling this function.
## It is recommended to use the overload that accepts a proof-of-possession
## to enforce correct usage.
PublicKey(pubkey).verify(message, blscurve.Signature(signature))
# https://github.com/ethereum/consensus-specs/blob/v1.5.0-alpha.8/specs/phase0/beacon-chain.md#bls-signatures
proc blsVerify*(
pubkey: ValidatorPubKey, message: openArray[byte],
signature: CookedSig): bool =
## Check that a signature is valid for a message
## under the provided public key.
## returns `true` if the signature and the pubkey is valid, `false` otherwise.
##
## The proof-of-possession MUST be verified before calling this function.
## It is recommended to use the overload that accepts a proof-of-possession
## to enforce correct usage.
let
parsedKey = pubkey.loadWithCache()
# Guard against invalid signature blobs that fail to parse
parsedKey.isSome() and blsVerify(parsedKey.get(), message, signature)
proc blsVerify*(
pubkey: ValidatorPubKey | CookedPubKey, message: openArray[byte],
signature: ValidatorSig): bool =
let
parsedSig = signature.load()
# Guard against invalid signature blobs that fail to parse
parsedSig.isSome() and blsVerify(pubkey, message, parsedSig.get())
func blsVerify*(sigset: SignatureSet): bool =
## Unbatched verification
## of 1 SignatureSet
## tuple[pubkey: blscurve.PublicKey, message: array[32, byte], blscurve.signature: Signature]
verify(
sigset.pubkey,
sigset.message,
sigset.signature
)
func blsSign*(privkey: ValidatorPrivKey, message: openArray[byte]): CookedSig =
## Computes a signature from a secret key and a message
CookedSig(SecretKey(privkey).sign(message))
func blsFastAggregateVerify*(
publicKeys: openArray[CookedPubKey],
message: openArray[byte],
signature: CookedSig
): bool =
## Verify the aggregate of multiple signatures on the same message
## This function is faster than AggregateVerify
##
## The proof-of-possession MUST be verified before calling this function.
## It is recommended to use the overload that accepts a proof-of-possession
## to enforce correct usage.
# TODO: Note: `invalid` in the following paragraph means invalid by construction
# The keys/signatures are not even points on the elliptic curves.
# To respect both the IETF API and the fact that
# we can have invalid public keys (as in not point on the elliptic curve),
# requiring a wrapper indirection,
# we need a first pass to extract keys from the wrapper
# and then call fastAggregateVerify.
# Instead:
# - either we expose a new API: context + init-update-finish
# in blscurve which already exists internally
# - or at network/databases/serialization boundaries we do not
# allow invalid BLS objects to pollute consensus routines
let keys = mapIt(publicKeys, PublicKey(it))
fastAggregateVerify(keys, message, blscurve.Signature(signature))
proc blsFastAggregateVerify*(
publicKeys: openArray[ValidatorPubKey],
message: openArray[byte],
signature: CookedSig
): bool =
var unwrapped: seq[PublicKey]
for pubkey in publicKeys:
let realkey = pubkey.loadWithCache()
if realkey.isNone:
return false
unwrapped.add PublicKey(realkey.get)
fastAggregateVerify(unwrapped, message, blscurve.Signature(signature))
func blsFastAggregateVerify*(
publicKeys: openArray[CookedPubKey],
message: openArray[byte],
signature: ValidatorSig
): bool =
let parsedSig = signature.load()
parsedSig.isSome and blsFastAggregateVerify(publicKeys, message, parsedSig.get())
proc blsFastAggregateVerify*(
publicKeys: openArray[ValidatorPubKey],
message: openArray[byte],
signature: ValidatorSig
): bool =
let parsedSig = signature.load()
parsedSig.isSome and blsFastAggregateVerify(publicKeys, message, parsedSig.get())
proc blsFastAggregateVerify*(
fullParticipationAggregatePublicKey: ValidatorPubKey,
nonParticipatingPublicKeys: openArray[ValidatorPubKey],
message: openArray[byte],
signature: CookedSig
): bool =
let unwrappedFull = fullParticipationAggregatePublicKey.loadWithCache.valueOr:
return false
var unwrapped = newSeqOfCap[PublicKey](nonParticipatingPublicKeys.len)
for pubkey in nonParticipatingPublicKeys:
let realkey = pubkey.loadWithCache.valueOr:
return false
unwrapped.add PublicKey(realkey)
fastAggregateVerify(
PublicKey(unwrappedFull), unwrapped,
message, blscurve.Signature(signature))
proc blsFastAggregateVerify*(
fullParticipationAggregatePublicKey: ValidatorPubKey,
nonParticipatingPublicKeys: openArray[ValidatorPubKey],
message: openArray[byte],
signature: ValidatorSig
): bool =
let parsedSig = signature.load()
parsedSig.isSome and blsFastAggregateVerify(
fullParticipationAggregatePublicKey, nonParticipatingPublicKeys,
message, parsedSig.get())
proc blsFastAggregateVerify*(
allPublicKeys: openArray[ValidatorPubKey],
fullParticipationAggregatePublicKey: ValidatorPubKey,
participantBits: BitArray,
message: openArray[byte],
signature: ValidatorSig
): bool =
const maxParticipants = participantBits.bits
var numParticipants = 0
for idx in 0 ..< maxParticipants:
if participantBits[idx]:
inc numParticipants
return
if numParticipants < 1:
false
elif numParticipants > maxParticipants div 2:
var nonParticipatingPublicKeys = newSeqOfCap[ValidatorPubKey](
maxParticipants - numParticipants)
for idx, pubkey in allPublicKeys:
if not participantBits[idx]:
nonParticipatingPublicKeys.add pubkey
blsFastAggregateVerify(
fullParticipationAggregatePublicKey, nonParticipatingPublicKeys,
message, signature)
else:
var publicKeys = newSeqOfCap[ValidatorPubKey](numParticipants)
for idx, pubkey in allPublicKeys:
if participantBits[idx]:
publicKeys.add pubkey
blsFastAggregateVerify(publicKeys, message, signature)
# Codecs
# ----------------------------------------------------------------------
func `$`*(x: ValidatorPrivKey): string =
"<private key>"
func `$`*(x: ValidatorPubKey | ValidatorSig): string =
x.blob.toHex()
func toRaw*(x: ValidatorPrivKey): array[32, byte] =
# TODO: distinct type - see https://github.com/status-im/nim-blscurve/pull/67
static: doAssert BLS_BACKEND == BLST
result = SecretKey(x).exportRaw()
template toRaw*(x: ValidatorPubKey | SomeSig): auto =
x.blob
func toHex*(x: BlsCurveType): string =
toHex(toRaw(x))
func toHex*(x: CookedPubKey): string =
toHex(x.toPubKey())
func `$`*(x: CookedPubKey): string =
$(x.toPubKey())
func toValidatorSig*(x: TrustedSig): ValidatorSig =
ValidatorSig(blob: x.blob)
func toValidatorSig*(x: CookedSig): ValidatorSig =
ValidatorSig(blob: blscurve.Signature(x).exportRaw())
func fromRaw*(T: type ValidatorPrivKey, bytes: openArray[byte]): BlsResult[T] =
var val: SecretKey
if val.fromBytes(bytes):
ok ValidatorPrivKey(val)
else:
err "bls: invalid private key"
func fromRaw*(BT: type[ValidatorPubKey | ValidatorSig], bytes: openArray[byte]): BlsResult[BT] =
# Signatures and keys are deserialized lazily
if bytes.len() != sizeof(BT):
err "bls: invalid bls length"
else:
ok BT(blob: toArray(sizeof(BT), bytes))
func fromHex*(T: type BlsCurveType, hexStr: string): BlsResult[T] {.inline.} =
## Initialize a BLSValue from its hex representation
try:
T.fromRaw(hexStr.hexToSeqByte())
except ValueError:
err "bls: cannot parse value"
func `==`*(a, b: ValidatorPubKey | ValidatorSig): bool =
equalMem(unsafeAddr a.blob[0], unsafeAddr b.blob[0], sizeof(a.blob))
func `==`*(a, b: ValidatorPrivKey): bool {.error: "Secret keys should stay secret".}
# Hashing
# ----------------------------------------------------------------------
template hash*(x: ValidatorPubKey | ValidatorSig): Hash =
static: doAssert sizeof(Hash) <= x.blob.len div 2
# We use rough "middle" of blob for the hash, assuming this is where most of
# the entropy is found
cast[ptr Hash](unsafeAddr x.blob[x.blob.len div 2])[]
# Comparison/Sorting
# ----------------------------------------------------------------------
template `<`*(x, y: ValidatorPubKey): bool =
x.blob < y.blob
# Serialization
# ----------------------------------------------------------------------
{.pragma: serializationRaises, raises: [SerializationError, IOError].}
proc writeValue*(
writer: var JsonWriter, value: ValidatorPubKey | CookedPubKey
) {.inline, raises: [IOError].} =
writer.writeValue(value.toHex())
proc readValue*(reader: var JsonReader, value: var ValidatorPubKey)
{.serializationRaises.} =
let key = ValidatorPubKey.fromHex(reader.readValue(string))
if key.isOk:
value = key.get
else:
# TODO: Can we provide better diagnostic?
raiseUnexpectedValue(reader, "Valid hex-encoded public key expected")
proc writeValue*(
writer: var JsonWriter, value: ValidatorSig
) {.inline, raises: [IOError].} =
# Workaround: https://github.com/status-im/nimbus-eth2/issues/374
writer.writeValue(value.toHex())
proc readValue*(reader: var JsonReader, value: var ValidatorSig)
{.serializationRaises.} =
let sig = ValidatorSig.fromHex(reader.readValue(string))
if sig.isOk:
value = sig.get
else:
# TODO: Can we provide better diagnostic?
raiseUnexpectedValue(reader, "Valid hex-encoded signature expected")
proc writeValue*(
writer: var JsonWriter, value: ValidatorPrivKey
) {.inline, raises: [IOError].} =
writer.writeValue(value.toHex())
proc readValue*(reader: var JsonReader, value: var ValidatorPrivKey)
{.serializationRaises.} =
let key = ValidatorPrivKey.fromHex(reader.readValue(string))
if key.isOk:
value = key.get
else:
# TODO: Can we provide better diagnostic?
raiseUnexpectedValue(reader, "Valid hex-encoded private key expected")
template fromSszBytes*(T: type[ValidatorPubKey | ValidatorSig], bytes: openArray[byte]): auto =
let v = fromRaw(T, bytes)
if v.isErr:
raise newException(MalformedSszError, $v.error)
v[]
# Logging
# ----------------------------------------------------------------------
func shortLog*(x: ValidatorPubKey | SomeSig): string =
## Logging for wrapped BLS types
## that may contain valid or non-validated data
byteutils.toHex(x.blob.toOpenArray(0, 3))
func shortLog*(x: CookedPubKey): string =
let raw = x.toRaw()
byteutils.toHex(raw.toOpenArray(0, 3))
func shortLog*(x: ValidatorPrivKey): string =
## Logging for raw unwrapped BLS types
"<private key>"
# Initialization
# ----------------------------------------------------------------------
# TODO more specific exceptions? don't raise?
# For confutils
func init*(T: typedesc[ValidatorPrivKey], hex: string): T {.noinit, raises: [ValueError].} =
let v = T.fromHex(hex)
if v.isErr:
raise (ref ValueError)(msg: $v.error)
v[]
# For mainchain monitor
func init*(T: typedesc[ValidatorPubKey], data: array[RawPubKeySize, byte]): T {.noinit, raises: [ValueError].} =
let v = T.fromRaw(data)
if v.isErr:
raise (ref ValueError)(msg: $v.error)
v[]
# For mainchain monitor
func init*(T: typedesc[ValidatorSig], data: array[RawSigSize, byte]): T {.noinit, raises: [ValueError].} =
let v = T.fromRaw(data)
if v.isErr:
raise (ref ValueError)(msg: $v.error)
v[]
func infinity*(T: type ValidatorSig): T =
result.blob[0] = byte 0xC0
func burnMem*(key: var ValidatorPrivKey) =
burnMem(addr key, sizeof(ValidatorPrivKey))
{.push warning[ProveField]:off.} # https://github.com/nim-lang/Nim/issues/22060
proc keyGen(rng: var HmacDrbgContext): BlsResult[blscurve.SecretKey] =
var
pubkey: blscurve.PublicKey
let bytes = rng.generate(array[32, byte])
result.ok default(blscurve.SecretKey)
if not keyGen(bytes, pubkey, result.value):
return err "key generation failed"
{.pop.}
proc secretShareId(x: uint32) : blscurve.ID =
let bytes: array[8, uint32] = [uint32 x, 0, 0, 0, 0, 0, 0, 0]
blscurve.ID.fromUint32(bytes)
func generateSecretShares*(sk: ValidatorPrivKey,
rng: var HmacDrbgContext,
k: uint32, n: uint32): BlsResult[seq[SecretShare]] =
doAssert k > 0 and k <= n
var originPts: seq[blscurve.SecretKey]
originPts.add(blscurve.SecretKey(sk))
for i in 1 ..< k:
originPts.add(? keyGen(rng))
var shares: seq[SecretShare]
for i in uint32(0) ..< n:
let numericShareId = i + 1 # the share id must not be zero
let blsShareId = secretShareId(numericShareId)
let secret = genSecretShare(originPts, blsShareId)
let share = SecretShare(key: ValidatorPrivKey(secret), id: numericShareId)
shares.add(share)
return ok shares
func toSignatureShare*(sig: CookedSig, id: uint32): SignatureShare =
result.sign = blscurve.Signature(sig)
result.id = id
func recoverSignature*(sings: seq[SignatureShare]): CookedSig =
let signs = sings.mapIt(it.sign)
let ids = sings.mapIt(secretShareId(it.id))
CookedSig blscurve.recover(signs, ids).expect(
"valid shares (validated when loading the keystore)")
proc confirmShares*(pubKey: ValidatorPubKey,
shares: seq[SecretShare],
rng: var HmacDrbgContext): bool =
let confirmationData = rng.generate(array[32, byte])
var signs: seq[SignatureShare]
for share in items(shares):
let signature = share.key.blsSign(confirmationData).toSignatureShare(share.id);
signs.add(signature)
let recovered = signs.recoverSignature()
return pubKey.blsVerify(confirmationData, recovered)