import # Std lib std/[typetraits, strutils, os, algorithm, math, sets], std/options as stdOptions, # Status libs stew/[varints, base58, base64, endians2, results, byteutils], bearssl, stew/shims/net as stewNet, stew/shims/[macros, tables], faststreams/[inputs, outputs, buffers], snappy, snappy/framing, json_serialization, json_serialization/std/[net, options], chronos, chronicles, metrics, # TODO: create simpler to use libp2p modules that use re-exports libp2p/[switch, standard_setup, peerinfo, multiaddress, multicodec, crypto/crypto, crypto/secp, protocols/identify, protocols/protocol], libp2p/protocols/secure/[secure, secio], libp2p/protocols/pubsub/[pubsub, rpc/message, rpc/messages], libp2p/transports/tcptransport, libp2p/stream/connection, eth/[keys, async_utils], eth/p2p/p2p_protocol_dsl, eth/net/nat, eth/p2p/discoveryv5/[enr, node], # Beacon node modules version, conf, eth2_discovery, libp2p_json_serialization, conf, ssz/ssz_serialization, peer_pool, spec/[datatypes, network], ./time when defined(nbc_gossipsub_11): import libp2p/protocols/pubsub/gossipsub else: import libp2p/protocols/pubsub/gossipsub10 when chronicles.enabledLogLevel == LogLevel.TRACE: import std/sequtils export version, multiaddress, peer_pool, peerinfo, p2pProtocol, connection, libp2p_json_serialization, ssz_serialization, results logScope: topics = "networking" type KeyPair* = crypto.KeyPair PublicKey* = crypto.PublicKey PrivateKey* = crypto.PrivateKey Bytes = seq[byte] ErrorMsg = List[byte, 256] # TODO: This is here only to eradicate a compiler # warning about unused import (rpc/messages). GossipMsg = messages.Message SeenItem* = object peerId*: PeerID stamp*: chronos.Moment # TODO Is this really needed? Eth2Node* = ref object of RootObj switch*: Switch pubsub*: PubSub discovery*: Eth2DiscoveryProtocol discoveryEnabled*: bool wantedPeers*: int peerPool*: PeerPool[Peer, PeerID] protocolStates*: seq[RootRef] libp2pTransportLoops*: seq[Future[void]] metadata*: Eth2Metadata connectTimeout*: chronos.Duration seenThreshold*: chronos.Duration connQueue: AsyncQueue[PeerAddr] seenTable: Table[PeerID, SeenItem] connWorkers: seq[Future[void]] connTable: HashSet[PeerID] forkId: ENRForkID rng*: ref BrHmacDrbgContext peers: Table[PeerID, Peer] EthereumNode = Eth2Node # needed for the definitions in p2p_backends_helpers Eth2MetaData* = object seq_number*: uint64 attnets*: BitArray[ATTESTATION_SUBNET_COUNT] ENRForkID* = object fork_digest*: ForkDigest next_fork_version*: Version next_fork_epoch*: Epoch AverageThroughput* = object count*: uint64 average*: float Peer* = ref object network*: Eth2Node info*: PeerInfo discoveryId*: Eth2DiscoveryId connectionState*: ConnectionState protocolStates*: seq[RootRef] maxInactivityAllowed*: Duration netThroughput: AverageThroughput score*: int connections*: int disconnectedFut: Future[void] PeerAddr* = object peerId*: PeerID addrs*: seq[MultiAddress] ConnectionState* = enum None, Connecting, Connected, Disconnecting, Disconnected UntypedResponse = ref object peer*: Peer stream*: Connection writtenChunks*: int SingleChunkResponse*[MsgType] = distinct UntypedResponse ## Protocol requests using this type will produce request-making ## client-side procs that return `NetRes[MsgType]` MultipleChunksResponse*[MsgType] = distinct UntypedResponse ## Protocol requests using this type will produce request-making ## client-side procs that return `NetRes[seq[MsgType]]`. ## In the future, such procs will return an `InputStream[NetRes[MsgType]]`. MessageInfo* = object name*: string # Private fields: libp2pCodecName: string protocolMounter*: MounterProc ProtocolInfoObj* = object name*: string messages*: seq[MessageInfo] index*: int # the position of the protocol in the # ordered list of supported protocols # Private fields: peerStateInitializer*: PeerStateInitializer networkStateInitializer*: NetworkStateInitializer onPeerConnected*: OnPeerConnectedHandler onPeerDisconnected*: OnPeerDisconnectedHandler ProtocolInfo* = ptr ProtocolInfoObj ResponseCode* = enum Success InvalidRequest ServerError PeerStateInitializer* = proc(peer: Peer): RootRef {.gcsafe.} NetworkStateInitializer* = proc(network: EthereumNode): RootRef {.gcsafe.} OnPeerConnectedHandler* = proc(peer: Peer, incoming: bool): Future[void] {.gcsafe.} OnPeerDisconnectedHandler* = proc(peer: Peer): Future[void] {.gcsafe.} ThunkProc* = LPProtoHandler MounterProc* = proc(network: Eth2Node) {.gcsafe.} MessageContentPrinter* = proc(msg: pointer): string {.gcsafe.} # https://github.com/ethereum/eth2.0-specs/blob/v0.12.3/specs/phase0/p2p-interface.md#goodbye DisconnectionReason* = enum # might see other values on the wire! ClientShutDown = 1 IrrelevantNetwork = 2 FaultOrError = 3 # Clients MAY use reason codes above 128 to indicate alternative, # erroneous request-specific responses. PeerScoreLow = 237 # 79 * 3 PeerDisconnected* = object of CatchableError reason*: DisconnectionReason TransmissionError* = object of CatchableError Eth2NetworkingErrorKind* = enum BrokenConnection ReceivedErrorResponse UnexpectedEOF PotentiallyExpectedEOF InvalidResponseCode InvalidSnappyBytes InvalidSszBytes StreamOpenTimeout ReadResponseTimeout ZeroSizePrefix SizePrefixOverflow Eth2NetworkingError = object case kind*: Eth2NetworkingErrorKind of ReceivedErrorResponse: responseCode: ResponseCode errorMsg: ErrorMsg else: discard NetRes*[T] = Result[T, Eth2NetworkingError] ## This is type returned from all network requests const clientId* = "Nimbus beacon node v" & fullVersionStr networkKeyFilename = "privkey.protobuf" nodeMetadataFilename = "node-metadata.json" TCP = net.Protocol.IPPROTO_TCP HandshakeTimeout = FaultOrError NewPeerScore* = 200 ## Score which will be assigned to new connected Peer PeerScoreLowLimit* = 0 ## Score after which peer will be kicked PeerScoreHighLimit* = 1000 ## Max value of peer's score ConcurrentConnections* = 10 ## Maximum number of active concurrent connection requests. SeenTableTimeTimeout* = when not defined(local_testnet): 5.minutes else: 10.seconds ## Seen period of time for timeout connections SeenTableTimeDeadPeer* = when not defined(local_testnet): 5.minutes else: 10.seconds ## Period of time for dead peers. SeenTableTimeIrrelevantNetwork* = 24.hours ## Period of time for `IrrelevantNetwork` error reason. SeenTableTimeClientShutDown* = 10.minutes ## Period of time for `ClientShutDown` error reason. SeenTableTimeFaultOrError* = 10.minutes ## Period of time for `FaultOnError` error reason. SeenTablePenaltyError* = 60.minutes ## Period of time for peers which score below or equal to zero. template neterr(kindParam: Eth2NetworkingErrorKind): auto = err(type(result), Eth2NetworkingError(kind: kindParam)) # Metrics for tracking attestation and beacon block loss declareCounter nbc_gossip_messages_sent, "Number of gossip messages sent by this peer" declareCounter nbc_gossip_messages_received, "Number of gossip messages received by this peer" declarePublicCounter nbc_successful_dials, "Number of successfully dialed peers" declarePublicCounter nbc_failed_dials, "Number of dialing attempts that failed" declarePublicCounter nbc_timeout_dials, "Number of dialing attempts that exceeded timeout" declarePublicGauge nbc_peers, "Number of active libp2p peers" const snappy_implementation {.strdefine.} = "libp2p" const useNativeSnappy = when snappy_implementation == "native": true elif snappy_implementation == "libp2p": false else: {.fatal: "Please set snappy_implementation to either 'libp2p' or 'native'".} const libp2p_pki_schemes {.strdefine.} = "" when libp2p_pki_schemes != "secp256k1": {.fatal: "Incorrect building process, please use -d:\"libp2p_pki_schemes=secp256k1\"".} template libp2pProtocol*(name: string, version: int) {.pragma.} func shortLog*(peer: Peer): string = shortLog(peer.info.peerId) chronicles.formatIt(Peer): shortLog(it) template remote*(peer: Peer): untyped = peer.info.peerId proc openStream(node: Eth2Node, peer: Peer, protocolId: string): Future[Connection] {.async.} = let protocolId = protocolId & "ssz_snappy" conn = await dial( node.switch, peer.info.peerId, peer.info.addrs, protocolId) # libp2p may replace peerinfo ref sometimes, so make sure we have a recent # one if conn.peerInfo != nil: peer.info = conn.peerInfo return conn proc init*(T: type Peer, network: Eth2Node, info: PeerInfo): Peer {.gcsafe.} proc getPeer*(node: Eth2Node, peerId: PeerID): Peer = node.peers.withValue(peerId, peer) do: return peer[] do: let peer = Peer.init(node, PeerInfo.init(peerId)) return node.peers.mGetOrPut(peerId, peer) proc peerFromStream(network: Eth2Node, conn: Connection): Peer = # TODO: Can this be `nil`? return network.getPeer(conn.peerInfo.peerId) proc getKey*(peer: Peer): PeerID {.inline.} = peer.info.peerId proc getFuture*(peer: Peer): Future[void] {.inline.} = if peer.disconnectedFut.isNil: peer.disconnectedFut = newFuture[void]() peer.disconnectedFut proc getScore*(a: Peer): int = ## Returns current score value for peer ``peer``. a.score proc updateScore*(peer: Peer, score: int) {.inline.} = ## Update peer's ``peer`` score with value ``score``. peer.score = peer.score + score if peer.score > PeerScoreHighLimit: peer.score = PeerScoreHighLimit proc calcThroughput(dur: Duration, value: uint64): float {.inline.} = let secs = float(chronos.seconds(1).nanoseconds) if isZero(dur): 0.0 else: float(value) * (secs / float(dur.nanoseconds)) proc updateNetThroughput*(peer: Peer, dur: Duration, bytesCount: uint64) {.inline.} = ## Update peer's ``peer`` network throughput. let bytesPerSecond = calcThroughput(dur, bytesCount) let a = peer.netThroughput.average let n = peer.netThroughput.count peer.netThroughput.average = a + (bytesPerSecond - a) / float(n + 1) inc(peer.netThroughput.count) proc netBps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Bps for peer ``peer``. round((peer.netThroughput.average * 10_000) / 10_000) proc netKbps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Kbps for peer ``peer``. round(((peer.netThroughput.average / 1024) * 10_000) / 10_000) proc netMbps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Mbps for peer ``peer``. round(((peer.netThroughput.average / (1024 * 1024)) * 10_000) / 10_000) proc `<`*(a, b: Peer): bool = ## Comparison function, which first checks peer's scores, and if the peers' ## score is equal it compares peers' network throughput. if a.score < b.score: true elif a.score == b.score: (a.netThroughput.average < b.netThroughput.average) else: false proc isSeen*(network: ETh2Node, peerId: PeerID): bool = ## Returns ``true`` if ``peerId`` present in SeenTable and time period is not ## yet expired. let currentTime = now(chronos.Moment) if peerId notin network.seenTable: false else: let item = network.seenTable[peerId] if currentTime >= item.stamp: # Peer is in SeenTable, but the time period has expired. network.seenTable.del(peerId) false else: true proc addSeen*(network: ETh2Node, peerId: PeerID, period: chronos.Duration) = ## Adds peer with PeerID ``peerId`` to SeenTable and timeout ``period``. let item = SeenItem(peerId: peerId, stamp: now(chronos.Moment) + period) network.seenTable[peerId] = item proc disconnect*(peer: Peer, reason: DisconnectionReason, notifyOtherPeer = false) {.async.} = # TODO: How should we notify the other peer? try: if peer.connectionState notin {Disconnecting, Disconnected}: peer.connectionState = Disconnecting # We adding peer in SeenTable before actual disconnect to avoid races. let seenTime = case reason of ClientShutDown: SeenTableTimeClientShutDown of IrrelevantNetwork: SeenTableTimeIrrelevantNetwork of FaultOrError: SeenTableTimeFaultOrError of PeerScoreLow: SeenTablePenaltyError peer.network.addSeen(peer.info.peerId, seenTime) await peer.network.switch.disconnect(peer.info.peerId) peer.connectionState = Disconnected except CatchableError as exc: # We do not care about exceptions in disconnection procedure. trace "Exception while disconnecting peer", peer = peer.info.peerId, reason = reason include eth/p2p/p2p_backends_helpers include eth/p2p/p2p_tracing proc getRequestProtoName(fn: NimNode): NimNode = # `getCustomPragmaVal` doesn't work yet on regular nnkProcDef nodes # (TODO: file as an issue) let pragmas = fn.pragma if pragmas.kind == nnkPragma and pragmas.len > 0: for pragma in pragmas: if pragma.len > 0 and $pragma[0] == "libp2pProtocol": let protoName = $(pragma[1]) let protoVer = $(pragma[2].intVal) return newLit("/eth2/beacon_chain/req/" & protoName & "/" & protoVer & "/") return newLit("") template raisePeerDisconnected(msg: string, r: DisconnectionReason) = var e = newException(PeerDisconnected, msg) e.reason = r raise e proc disconnectAndRaise(peer: Peer, reason: DisconnectionReason, msg: string) {.async.} = let r = reason await peer.disconnect(r) raisePeerDisconnected(msg, r) proc writeChunk*(conn: Connection, responseCode: Option[ResponseCode], payload: Bytes): Future[void] = var output = memoryOutput() if responseCode.isSome: output.write byte(responseCode.get) output.write varintBytes(payload.lenu64) output.write(framingFormatCompress payload) conn.write(output.getOutput) template errorMsgLit(x: static string): ErrorMsg = const val = ErrorMsg toBytes(x) val proc formatErrorMsg(msg: ErrorMSg): string = let candidate = string.fromBytes(asSeq(msg)) for c in candidate: # TODO UTF-8 - but let's start with ASCII if ord(c) < 32 or ord(c) > 127: return byteutils.toHex(asSeq(msg)) return candidate proc sendErrorResponse(peer: Peer, conn: Connection, responseCode: ResponseCode, errMsg: ErrorMsg): Future[void] = debug "Error processing request", peer, responseCode, errMsg = formatErrorMsg(errMsg) conn.writeChunk(some responseCode, SSZ.encode(errMsg)) proc sendNotificationMsg(peer: Peer, protocolId: string, requestBytes: Bytes) {.async} = var deadline = sleepAsync RESP_TIMEOUT streamFut = peer.network.openStream(peer, protocolId) await streamFut or deadline if not streamFut.finished: streamFut.cancel() raise newException(TransmissionError, "Failed to open LibP2P stream") let stream = streamFut.read try: await stream.writeChunk(none ResponseCode, requestBytes) finally: await stream.close() proc sendResponseChunkBytes(response: UntypedResponse, payload: Bytes): Future[void] = inc response.writtenChunks response.stream.writeChunk(some Success, payload) proc sendResponseChunkObj(response: UntypedResponse, val: auto): Future[void] = inc response.writtenChunks response.stream.writeChunk(some Success, SSZ.encode(val)) template sendUserHandlerResultAsChunkImpl*(stream: Connection, handlerResultFut: Future): untyped = let handlerRes = await handlerResultFut writeChunk(stream, some Success, SSZ.encode(handlerRes)) template sendUserHandlerResultAsChunkImpl*(stream: Connection, handlerResult: auto): untyped = writeChunk(stream, some Success, SSZ.encode(handlerResult)) when useNativeSnappy: include faststreams_backend else: include libp2p_streams_backend proc makeEth2Request(peer: Peer, protocolId: string, requestBytes: Bytes, ResponseMsg: type, timeout: Duration): Future[NetRes[ResponseMsg]] {.async.} = var deadline = sleepAsync timeout let stream = awaitWithTimeout(peer.network.openStream(peer, protocolId), deadline): return neterr StreamOpenTimeout try: # Send the request await stream.writeChunk(none ResponseCode, requestBytes) # Half-close the stream to mark the end of the request - if this is not # done, the other peer might never send us the response. await stream.close() # Read the response return await readResponse(when useNativeSnappy: libp2pInput(stream) else: stream, peer, ResponseMsg, timeout) finally: await stream.closeWithEOF() proc init*[MsgType](T: type MultipleChunksResponse[MsgType], peer: Peer, conn: Connection): T = T(UntypedResponse(peer: peer, stream: conn)) proc init*[MsgType](T: type SingleChunkResponse[MsgType], peer: Peer, conn: Connection): T = T(UntypedResponse(peer: peer, stream: conn)) template write*[M](r: MultipleChunksResponse[M], val: auto): untyped = sendResponseChunkObj(UntypedResponse(r), val) template send*[M](r: SingleChunkResponse[M], val: auto): untyped = doAssert UntypedResponse(r).writtenChunks == 0 sendResponseChunkObj(UntypedResponse(r), val) proc performProtocolHandshakes*(peer: Peer, incoming: bool) {.async.} = # Loop down serially because it's easier to reason about the connection state # when there are fewer async races, specially during setup for protocol in allProtocols: if protocol.onPeerConnected != nil: await protocol.onPeerConnected(peer, incoming) proc initProtocol(name: string, peerInit: PeerStateInitializer, networkInit: NetworkStateInitializer): ProtocolInfoObj = result.name = name result.messages = @[] result.peerStateInitializer = peerInit result.networkStateInitializer = networkInit proc registerProtocol(protocol: ProtocolInfo) = # TODO: This can be done at compile-time in the future let pos = lowerBound(gProtocols, protocol) gProtocols.insert(protocol, pos) for i in 0 ..< gProtocols.len: gProtocols[i].index = i proc setEventHandlers(p: ProtocolInfo, onPeerConnected: OnPeerConnectedHandler, onPeerDisconnected: OnPeerDisconnectedHandler) = p.onPeerConnected = onPeerConnected p.onPeerDisconnected = onPeerDisconnected proc implementSendProcBody(sendProc: SendProc) = let msg = sendProc.msg UntypedResponse = bindSym "UntypedResponse" proc sendCallGenerator(peer, bytes: NimNode): NimNode = if msg.kind != msgResponse: let msgProto = getRequestProtoName(msg.procDef) case msg.kind of msgRequest: let ResponseRecord = msg.response.recName quote: makeEth2Request(`peer`, `msgProto`, `bytes`, `ResponseRecord`, `timeoutVar`) else: quote: sendNotificationMsg(`peer`, `msgProto`, `bytes`) else: quote: sendResponseChunkBytes(`UntypedResponse`(`peer`), `bytes`) sendProc.useStandardBody(nil, nil, sendCallGenerator) proc handleIncomingStream(network: Eth2Node, conn: Connection, MsgType: type) {.async.} = mixin callUserHandler, RecType type MsgRec = RecType(MsgType) const msgName {.used.} = typetraits.name(MsgType) ## Uncomment this to enable tracing on all incoming requests ## You can include `msgNameLit` in the condition to select ## more specific requests: # when chronicles.runtimeFilteringEnabled: # setLogLevel(LogLevel.TRACE) # defer: setLogLevel(LogLevel.DEBUG) # trace "incoming " & `msgNameLit` & " conn" try: let peer = peerFromStream(network, conn) # TODO peer connection setup is broken, update info in some better place # whenever race is fix: # https://github.com/status-im/nim-beacon-chain/issues/1157 peer.info = conn.peerInfo template returnInvalidRequest(msg: ErrorMsg) = await sendErrorResponse(peer, conn, InvalidRequest, msg) return template returnInvalidRequest(msg: string) = returnInvalidRequest(ErrorMsg msg.toBytes) let s = when useNativeSnappy: let fs = libp2pInput(conn) if fs.timeoutToNextByte(TTFB_TIMEOUT): returnInvalidRequest(errorMsgLit "Request first byte not sent in time") fs else: # TODO The TTFB timeout is not implemented in LibP2P streams back-end conn let deadline = sleepAsync RESP_TIMEOUT let msg = if sizeof(MsgRec) > 0: try: awaitWithTimeout(readChunkPayload(s, peer, MsgRec), deadline): returnInvalidRequest(errorMsgLit "Request full data not sent in time") except SerializationError as err: returnInvalidRequest err.formatMsg("msg") except SnappyError as err: returnInvalidRequest err.msg else: NetRes[MsgRec].ok default(MsgRec) if msg.isErr: let (responseCode, errMsg) = case msg.error.kind of UnexpectedEOF, PotentiallyExpectedEOF: (InvalidRequest, errorMsgLit "Incomplete request") of InvalidSnappyBytes: (InvalidRequest, errorMsgLit "Failed to decompress snappy payload") of InvalidSszBytes: (InvalidRequest, errorMsgLit "Failed to decode SSZ payload") of ZeroSizePrefix: (InvalidRequest, errorMsgLit "The request chunk cannot have a size of zero") of SizePrefixOverflow: (InvalidRequest, errorMsgLit "The chunk size exceed the maximum allowed") of InvalidResponseCode, ReceivedErrorResponse, StreamOpenTimeout, ReadResponseTimeout: # These shouldn't be possible in a request, because # there are no response codes being read, no stream # openings and no reading of responses: (ServerError, errorMsgLit "Internal server error") of BrokenConnection: return await sendErrorResponse(peer, conn, responseCode, errMsg) return try: logReceivedMsg(peer, MsgType(msg.get)) await callUserHandler(MsgType, peer, conn, msg.get) except CatchableError as err: await sendErrorResponse(peer, conn, ServerError, ErrorMsg err.msg.toBytes) except CatchableError as err: debug "Error processing an incoming request", err = err.msg, msgName finally: await conn.closeWithEOF() proc toPeerAddr*(r: enr.TypedRecord): Result[PeerAddr, cstring] {.raises: [Defect].} = if not r.secp256k1.isSome: return err("enr: no secp256k1 key in record") let pubKey = ? keys.PublicKey.fromRaw(r.secp256k1.get) peerId = ? PeerID.init(crypto.PublicKey( scheme: Secp256k1, skkey: secp.SkPublicKey(pubKey))) var addrs = newSeq[MultiAddress]() if r.ip.isSome and r.tcp.isSome: let ip = ipv4(r.ip.get) addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp.get) if r.ip6.isSome: let ip = ipv6(r.ip6.get) if r.tcp6.isSome: addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp6.get) elif r.tcp.isSome: addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp.get) else: discard if addrs.len == 0: return err("enr: no addresses in record") ok(PeerAddr(peerId: peerId, addrs: addrs)) proc checkPeer(node: Eth2Node, peerAddr: PeerAddr): bool = logScope: peer = peerAddr.peerId let peerId = peerAddr.peerId if node.peerPool.hasPeer(peerId): trace "Already connected" false else: if node.isSeen(peerId): trace "Recently connected" false else: true proc dialPeer*(node: Eth2Node, peerAddr: PeerAddr, index = 0) {.async.} = ## Establish connection with remote peer identified by address ``peerAddr``. logScope: peer = peerAddr.peerId index = index if not(node.checkPeer(peerAddr)): return debug "Connecting to discovered peer" var deadline = sleepAsync(node.connectTimeout) var workfut = node.switch.connect(peerAddr.peerId, peerAddr.addrs) try: # `or` operation will only raise exception of `workfut`, because `deadline` # could not raise exception. await workfut or deadline if workfut.finished(): if not deadline.finished(): deadline.cancel() inc nbc_successful_dials else: # TODO: As soon as `nim-libp2p` will be able to handle cancellation # properly and will have cancellation tests, we need add here cancellation # of `workfut`. # workfut.cancel() debug "Connection to remote peer timed out" inc nbc_timeout_dials node.addSeen(peerAddr.peerId, SeenTableTimeTimeout) except CatchableError as exc: debug "Connection to remote peer failed", msg = exc.msg inc nbc_failed_dials node.addSeen(peerAddr.peerId, SeenTableTimeDeadPeer) proc connectWorker(node: Eth2Node, index: int) {.async.} = debug "Connection worker started", index = index while true: # This loop will never produce HIGH CPU usage because it will wait # and block until it not obtains new peer from the queue ``connQueue``. let remotePeerAddr = await node.connQueue.popFirst() await node.dialPeer(remotePeerAddr, index) # Peer was added to `connTable` before adding it to `connQueue`, so we # excluding peer here after processing. node.connTable.excl(remotePeerAddr.peerId) proc toPeerAddr(node: Node): Result[PeerAddr, cstring] {.raises: [Defect].} = let nodeRecord = ? node.record.toTypedRecord() let peerAddr = ? nodeRecord.toPeerAddr() ok(peerAddr) proc runDiscoveryLoop*(node: Eth2Node) {.async.} = debug "Starting discovery loop" let enrField = ("eth2", SSZ.encode(node.forkId)) while true: # We always request constant number of peers to avoid problem with # low amount of returned peers. let discoveredNodes = node.discovery.randomNodes(node.wantedPeers, enrField) var newPeers = 0 for discNode in discoveredNodes: let res = discNode.toPeerAddr() if res.isOk(): let peerAddr = res.get() # Waiting for an empty space in PeerPool. while true: if node.peerPool.lenSpace({PeerType.Outgoing}) == 0: await node.peerPool.waitForEmptySpace(PeerType.Outgoing) else: break # Check if peer present in SeenTable or PeerPool. if node.checkPeer(peerAddr): if peerAddr.peerId notin node.connTable: # We adding to pending connections table here, but going # to remove it only in `connectWorker`. node.connTable.incl(peerAddr.peerId) await node.connQueue.addLast(peerAddr) inc(newPeers) else: debug "Failed to decode discovery's node address", node = $discnode, errMsg = res.error debug "Discovery tick", wanted_peers = node.wantedPeers, space = node.peerPool.shortLogSpace(), acquired = node.peerPool.shortLogAcquired(), available = node.peerPool.shortLogAvailable(), current = node.peerPool.shortLogCurrent(), length = len(node.peerPool), discovered_nodes = len(discoveredNodes), new_peers = newPeers if newPeers == 0: warn "Could not discover any new nodes in network, waiting", discovered = len(discoveredNodes), new_peers = newPeers, wanted_peers = node.wantedPeers await sleepAsync(5.seconds) else: await sleepAsync(1.seconds) proc getPersistentNetMetadata*(conf: BeaconNodeConf): Eth2Metadata = let metadataPath = conf.dataDir / nodeMetadataFilename if not fileExists(metadataPath): result = Eth2Metadata() for i in 0 ..< ATTESTATION_SUBNET_COUNT: # TODO: For now, we indicate that we participate in all subnets result.attnets[i] = true Json.saveFile(metadataPath, result) else: result = Json.loadFile(metadataPath, Eth2Metadata) proc onConnEvent(node: Eth2Node, peerId: PeerID, event: ConnEvent) {.async.} = let peer = node.getPeer(peerId) case event.kind of ConnEventKind.Connected: inc peer.connections debug "Peer upgraded", peer = $peerId, connections = peer.connections if peer.connections == 1: # Libp2p may connect multiple times to the same peer - using different # transports for both incoming and outgoing. For now, we'll count our # "fist" encounter with the peer as the true connection, leaving the # other connections be - libp2p limits the number of concurrent # connections to the same peer, and only one of these connections will be # active. Nonetheless, this quirk will cause a number of odd behaviours: # * For peer limits, we might miscount the incoming vs outgoing quota # * Protocol handshakes are wonky: we'll not necessarily use the newly # connected transport - instead we'll just pick a random one! await performProtocolHandshakes(peer, event.incoming) # While performing the handshake, the peer might have been disconnected - # there's still a slim chance of a race condition here if a reconnect # happens quickly if peer.connections == 1: let res = if event.incoming: node.peerPool.addPeerNoWait(peer, PeerType.Incoming) else: node.peerPool.addPeerNoWait(peer, PeerType.Outgoing) case res: of PeerStatus.LowScoreError, PeerStatus.NoSpaceError: # Peer has low score or we do not have enough space in PeerPool, # we are going to disconnect it gracefully. await peer.disconnect(FaultOrError) of PeerStatus.DeadPeerError: # Peer's lifetime future is finished, so its already dead, # we do not need to perform gracefull disconect. discard of PeerStatus.DuplicateError: # Peer is already present in PeerPool, we can't perform disconnect, # because in such case we could kill both connections (connection # which is present in PeerPool and new one). discard of PeerStatus.Success: # Peer was added to PeerPool. discard of ConnEventKind.Disconnected: dec peer.connections debug "Peer disconnected", peer = $peerId, connections = peer.connections if peer.connections == 0: let fut = peer.disconnectedFut if fut != nil: peer.disconnectedFut = nil fut.complete() proc init*(T: type Eth2Node, conf: BeaconNodeConf, enrForkId: ENRForkID, switch: Switch, pubsub: PubSub, ip: Option[ValidIpAddress], tcpPort, udpPort: Port, privKey: keys.PrivateKey, discovery: bool, rng: ref BrHmacDrbgContext): T = new result result.switch = switch result.pubsub = pubsub result.wantedPeers = conf.maxPeers result.peerPool = newPeerPool[Peer, PeerID](maxPeers = conf.maxPeers) when not defined(local_testnet): result.connectTimeout = 1.minutes result.seenThreshold = 5.minutes else: result.connectTimeout = 10.seconds result.seenThreshold = 10.seconds result.seenTable = initTable[PeerID, SeenItem]() result.connTable = initHashSet[PeerID]() # Its important here to create AsyncQueue with limited size, otherwise # it could produce HIGH cpu usage. result.connQueue = newAsyncQueue[PeerAddr](ConcurrentConnections) result.metadata = getPersistentNetMetadata(conf) result.forkId = enrForkId result.discovery = Eth2DiscoveryProtocol.new( conf, ip, tcpPort, udpPort, privKey, {"eth2": SSZ.encode(result.forkId), "attnets": SSZ.encode(result.metadata.attnets)}, rng) result.discoveryEnabled = discovery newSeq result.protocolStates, allProtocols.len for proto in allProtocols: if proto.networkStateInitializer != nil: result.protocolStates[proto.index] = proto.networkStateInitializer(result) for msg in proto.messages: if msg.protocolMounter != nil: msg.protocolMounter result let node = result proc peerHook(peerId: PeerID, event: ConnEvent): Future[void] {.gcsafe.} = onConnEvent(node, peerId, event) switch.addConnEventHandler(peerHook, ConnEventKind.Connected) switch.addConnEventHandler(peerHook, ConnEventKind.Disconnected) template publicKey*(node: Eth2Node): keys.PublicKey = node.discovery.privKey.toPublicKey proc startListening*(node: Eth2Node) {.async.} = if node.discoveryEnabled: node.discovery.open() node.libp2pTransportLoops = await node.switch.start() await node.pubsub.start() proc start*(node: Eth2Node) {.async.} = proc onPeerCountChanged() = trace "Number of peers has been changed", space = node.peerPool.shortLogSpace(), acquired = node.peerPool.shortLogAcquired(), available = node.peerPool.shortLogAvailable(), current = node.peerPool.shortLogCurrent(), length = len(node.peerPool) nbc_peers.set int64(len(node.peerPool)) node.peerPool.setPeerCounter(onPeerCountChanged) for i in 0 ..< ConcurrentConnections: node.connWorkers.add connectWorker(node, i) if node.discoveryEnabled: node.discovery.start() traceAsyncErrors node.runDiscoveryLoop() else: debug "Discovery disabled, trying bootstrap nodes", nodes = node.discovery.bootstrapRecords.len for enr in node.discovery.bootstrapRecords: let tr = enr.toTypedRecord() if tr.isOk(): let pa = tr.get().toPeerAddr() if pa.isOk(): await node.connQueue.addLast(pa.get()) proc stop*(node: Eth2Node) {.async.} = # Ignore errors in futures, since we're shutting down (but log them on the # TRACE level, if a timeout is reached). let waitedFutures = @[ node.discovery.closeWait(), node.switch.stop(), ] timeout = 5.seconds completed = await withTimeout(allFutures(waitedFutures), timeout) if not completed: trace "Eth2Node.stop(): timeout reached", timeout, futureErrors = waitedFutures.filterIt(it.error != nil).mapIt(it.error.msg) proc init*(T: type Peer, network: Eth2Node, info: PeerInfo): Peer = new result result.info = info result.network = network result.connectionState = Connected result.maxInactivityAllowed = 15.minutes # TODO: Read this from the config newSeq result.protocolStates, allProtocols.len for i in 0 ..< allProtocols.len: let proto = allProtocols[i] if proto.peerStateInitializer != nil: result.protocolStates[i] = proto.peerStateInitializer(result) proc registerMsg(protocol: ProtocolInfo, name: string, mounter: MounterProc, libp2pCodecName: string) = protocol.messages.add MessageInfo(name: name, protocolMounter: mounter, libp2pCodecName: libp2pCodecName) proc p2pProtocolBackendImpl*(p: P2PProtocol): Backend = var Format = ident "SSZ" Bool = bindSym "bool" Connection = bindSym "Connection" Peer = bindSym "Peer" Eth2Node = bindSym "Eth2Node" registerMsg = bindSym "registerMsg" initProtocol = bindSym "initProtocol" msgVar = ident "msg" networkVar = ident "network" callUserHandler = ident "callUserHandler" MSG = ident "MSG" p.useRequestIds = false p.useSingleRecordInlining = true new result result.PeerType = Peer result.NetworkType = Eth2Node result.registerProtocol = bindSym "registerProtocol" result.setEventHandlers = bindSym "setEventHandlers" result.SerializationFormat = Format result.RequestResultsWrapper = ident "NetRes" result.implementMsg = proc (msg: p2p_protocol_dsl.Message) = if msg.kind == msgResponse: return let protocol = msg.protocol msgName = $msg.ident msgNameLit = newLit msgName MsgRecName = msg.recName MsgStrongRecName = msg.strongRecName codecNameLit = getRequestProtoName(msg.procDef) protocolMounterName = ident(msgName & "Mounter") ## ## Implement the Thunk: ## ## The protocol handlers in nim-libp2p receive only a `Connection` ## parameter and there is no way to access the wider context (such ## as the current `Switch`). In our handlers, we may need to list all ## peers in the current network, so we must keep a reference to the ## network object in the closure environment of the installed handlers. ## ## For this reason, we define a `protocol mounter` proc that will ## initialize the network object by creating handlers bound to the ## specific network. ## var userHandlerCall = newTree(nnkDiscardStmt) if msg.userHandler != nil: var OutputParamType = if msg.kind == msgRequest: msg.outputParamType else: nil if OutputParamType == nil: userHandlerCall = msg.genUserHandlerCall(msgVar, [peerVar]) if msg.kind == msgRequest: userHandlerCall = newCall(ident"sendUserHandlerResultAsChunkImpl", streamVar, userHandlerCall) else: if OutputParamType.kind == nnkVarTy: OutputParamType = OutputParamType[0] let isChunkStream = eqIdent(OutputParamType[0], "MultipleChunksResponse") msg.response.recName = if isChunkStream: newTree(nnkBracketExpr, ident"seq", OutputParamType[1]) else: OutputParamType[1] let responseVar = ident("response") userHandlerCall = newStmtList( newVarStmt(responseVar, newCall(ident"init", OutputParamType, peerVar, streamVar)), msg.genUserHandlerCall(msgVar, [peerVar], outputParam = responseVar)) protocol.outRecvProcs.add quote do: template `callUserHandler`(`MSG`: type `MsgStrongRecName`, `peerVar`: `Peer`, `streamVar`: `Connection`, `msgVar`: `MsgRecName`): untyped = `userHandlerCall` proc `protocolMounterName`(`networkVar`: `Eth2Node`) = proc snappyThunk(`streamVar`: `Connection`, `protocolVar`: string): Future[void] {.gcsafe.} = return handleIncomingStream(`networkVar`, `streamVar`, `MsgStrongRecName`) mount `networkVar`.switch, LPProtocol(codecs: @[`codecNameLit` & "ssz_snappy"], handler: snappyThunk) ## ## Implement Senders and Handshake ## if msg.kind == msgHandshake: macros.error "Handshake messages are not supported in LibP2P protocols" else: var sendProc = msg.createSendProc() implementSendProcBody sendProc protocol.outProcRegistrations.add( newCall(registerMsg, protocol.protocolInfoVar, msgNameLit, protocolMounterName, codecNameLit)) result.implementProtocolInit = proc (p: P2PProtocol): NimNode = return newCall(initProtocol, newLit(p.name), p.peerInit, p.netInit) proc setupNat(conf: BeaconNodeConf): tuple[ip: Option[ValidIpAddress], tcpPort: Port, udpPort: Port] = # defaults result.tcpPort = conf.tcpPort result.udpPort = conf.udpPort var nat: NatStrategy case conf.nat.toLowerAscii: of "any": nat = NatAny of "none": nat = NatNone of "upnp": nat = NatUpnp of "pmp": nat = NatPmp else: if conf.nat.startsWith("extip:"): try: # any required port redirection is assumed to be done by hand result.ip = some(ValidIpAddress.init(conf.nat[6..^1])) nat = NatNone except ValueError: error "nor a valid IP address", address = conf.nat[6..^1] quit QuitFailure else: error "not a valid NAT mechanism", value = conf.nat quit QuitFailure if nat != NatNone: let extIp = getExternalIP(nat) if extIP.isSome: result.ip = some(ValidIpAddress.init extIp.get) # TODO redirectPorts in considered a gcsafety violation # because it obtains the address of a non-gcsafe proc? let extPorts = ({.gcsafe.}: redirectPorts(tcpPort = result.tcpPort, udpPort = result.udpPort, description = clientId)) if extPorts.isSome: (result.tcpPort, result.udpPort) = extPorts.get() func asLibp2pKey*(key: keys.PublicKey): PublicKey = PublicKey(scheme: Secp256k1, skkey: secp.SkPublicKey(key)) func asEthKey*(key: PrivateKey): keys.PrivateKey = keys.PrivateKey(key.skkey) proc initAddress*(T: type MultiAddress, str: string): T = let address = MultiAddress.init(str) if IPFS.match(address) and matchPartial(multiaddress.TCP, address): result = address else: raise newException(MultiAddressError, "Invalid bootstrap node multi-address") template tcpEndPoint(address, port): auto = MultiAddress.init(address, tcpProtocol, port) proc getPersistentNetKeys*( rng: var BrHmacDrbgContext, conf: BeaconNodeConf): KeyPair = let privKeyPath = conf.dataDir / networkKeyFilename privKey = if not fileExists(privKeyPath): createDir conf.dataDir.string let key = PrivateKey.random(Secp256k1, rng).tryGet() writeFile(privKeyPath, key.getBytes().tryGet()) key else: let keyBytes = readFile(privKeyPath) PrivateKey.init(keyBytes.toOpenArrayByte(0, keyBytes.high)).tryGet() KeyPair(seckey: privKey, pubkey: privKey.getKey().tryGet()) func gossipId(data: openArray[byte]): string = # https://github.com/ethereum/eth2.0-specs/blob/v0.12.3/specs/phase0/p2p-interface.md#topics-and-messages base64.encode(Base64Url, sha256.digest(data).data) func msgIdProvider(m: messages.Message): string = gossipId(m.data) proc createEth2Node*( rng: ref BrHmacDrbgContext, conf: BeaconNodeConf, enrForkId: ENRForkID): Eth2Node = var (extIp, extTcpPort, extUdpPort) = setupNat(conf) hostAddress = tcpEndPoint(conf.libp2pAddress, conf.tcpPort) announcedAddresses = if extIp.isNone(): @[] else: @[tcpEndPoint(extIp.get(), extTcpPort)] info "Initializing networking", hostAddress, announcedAddresses let keys = getPersistentNetKeys(rng[], conf) # TODO nim-libp2p still doesn't have support for announcing addresses # that are different from the host address (this is relevant when we # are running behind a NAT). var switch = newStandardSwitch(some keys.seckey, hostAddress, transportFlags = {ServerFlags.ReuseAddr}, secureManagers = [ SecureProtocol.Noise, # Only noise in ETH2! ], rng = rng) let pubsub = GossipSub.init( switch = switch, msgIdProvider = msgIdProvider, triggerSelf = true, sign = false, verifySignature = false).PubSub switch.mount(pubsub) result = Eth2Node.init(conf, enrForkId, switch, pubsub, extIp, extTcpPort, extUdpPort, keys.seckey.asEthKey, discovery = conf.discv5Enabled, rng = rng) proc getPersistenBootstrapAddr*(rng: var BrHmacDrbgContext, conf: BeaconNodeConf, ip: ValidIpAddress, port: Port): EnrResult[enr.Record] = let pair = getPersistentNetKeys(rng, conf) return enr.Record.init(1'u64, # sequence number pair.seckey.asEthKey, some(ip), port, port, @[]) proc announcedENR*(node: Eth2Node): enr.Record = doAssert node.discovery != nil, "The Eth2Node must be initialized" node.discovery.localNode.record proc shortForm*(id: KeyPair): string = $PeerID.init(id.pubkey) proc subscribe*[MsgType](node: Eth2Node, topic: string, msgHandler: proc(msg: MsgType) {.gcsafe.} ) {.async.} = proc execMsgHandler(topic: string, data: seq[byte]) {.async.} = inc nbc_gossip_messages_received trace "Incoming pubsub message received", len = data.len, topic, msgId = gossipId(data) try: let decompressed = snappy.decode(data, GOSSIP_MAX_SIZE) if decompressed.len > 0: msgHandler SSZ.decode(decompressed, MsgType) else: # TODO penalize peer? debug "Failed to decompress gossip payload" except CatchableError as err: debug "Gossip msg handler error", msg = err.msg, len = data.len, topic, msgId = gossipId(data) await node.pubsub.subscribe(topic & "_snappy", execMsgHandler) proc subscribe*(node: Eth2Node, topic: string) {.async.} = proc dummyMsgHandler(topic: string, data: seq[byte]) {.async.} = discard await node.pubsub.subscribe(topic & "_snappy", dummyMsgHandler) proc addValidator*[MsgType](node: Eth2Node, topic: string, msgValidator: proc(msg: MsgType): ValidationResult {.gcsafe.} ) = # Validate messages as soon as subscribed proc execValidator( topic: string, message: GossipMsg): Future[bool] {.async.} = trace "Validating incoming gossip message", len = message.data.len, topic, msgId = gossipId(message.data) try: let decompressed = snappy.decode(message.data, GOSSIP_MAX_SIZE) if decompressed.len > 0: return msgValidator(SSZ.decode(decompressed, MsgType)) == EVRESULT_ACCEPT else: # TODO penalize peer? debug "Failed to decompress gossip payload" except CatchableError as err: debug "Gossip validation error", msg = err.msg, msgId = gossipId(message.data) return false node.pubsub.addValidator(topic & "_snappy", execValidator) proc unsubscribe*(node: Eth2Node, topic: string): Future[void] = node.pubsub.unsubscribeAll(topic) proc traceMessage(fut: FutureBase, msgId: string) = fut.addCallback do (arg: pointer): if not(fut.failed): trace "Outgoing pubsub message sent", msgId elif fut.error != nil: debug "Gossip message not sent", msgId, err = fut.error.msg else: debug "Unexpected future state for gossip", msgId, state = fut.state proc broadcast*(node: Eth2Node, topic: string, msg: auto) = inc nbc_gossip_messages_sent let data = snappy.encode(SSZ.encode(msg)) var futSnappy = node.pubsub.publish(topic & "_snappy", data) traceMessage(futSnappy, gossipId(data))