# beacon_chain # Copyright (c) 2018-2021 Status Research & Development GmbH # Licensed and distributed under either of # * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. {.push raises: [Defect].} import # Standard library std/[algorithm, math, parseutils, strformat, strutils, typetraits, unicode, uri], # Third-party libraries normalize, # Status libraries stew/[results, bitseqs, bitops2], stew/shims/macros, bearssl, eth/keyfile/uuid, blscurve, json_serialization, nimcrypto/[sha2, rijndael, pbkdf2, bcmode, hash, scrypt], # Local modules libp2p/crypto/crypto as lcrypto, ./datatypes/base, ./signatures export base, uri # We use `ncrutils` for constant-time hexadecimal encoding/decoding procedures. import nimcrypto/utils as ncrutils export results, burnMem, writeValue, readValue {.localPassC: "-fno-lto".} # no LTO for crypto type ChecksumFunctionKind* = enum sha256Checksum = "sha256" Sha256Params* = object Sha256Digest* = MDigest[256] ChecksumBytes* = distinct seq[byte] Checksum* = object case function*: ChecksumFunctionKind of sha256Checksum: params*: Sha256Params message*: Sha256Digest Aes128CtrIv* = distinct seq[byte] Aes128CtrParams* = object iv*: Aes128CtrIv CipherFunctionKind* = enum aes128CtrCipher = "aes-128-ctr" CipherBytes* = distinct seq[byte] Cipher* = object case function*: CipherFunctionKind of aes128ctrCipher: params*: Aes128CtrParams message*: CipherBytes KdfKind* = enum kdfPbkdf2 = "pbkdf2" kdfScrypt = "scrypt" ScryptSalt* = distinct seq[byte] ScryptParams* = object dklen: uint64 n, p, r: int salt: ScryptSalt Pbkdf2Salt* = distinct seq[byte] PrfKind* = enum # Pseudo-random-function Kind HmacSha256 = "hmac-sha256" Pbkdf2Params* = object dklen*: uint64 c*: uint64 prf*: PrfKind salt*: Pbkdf2Salt DecryptionStatus* = enum Success = "Success" InvalidPassword = "Invalid password" InvalidKeystore = "Invalid keystore" # https://github.com/ethereum/EIPs/blob/4494da0966afa7318ec0157948821b19c4248805/EIPS/eip-2386.md#specification Wallet* = object uuid*: UUID name*: WalletName version*: uint walletType* {.serializedFieldName: "type"}: string # TODO: The use of `JsonString` can be removed once we # solve the serialization problem for `Crypto[T]` crypto*: Crypto nextAccount* {.serializedFieldName: "nextaccount".}: Natural Kdf* = object case function*: KdfKind of kdfPbkdf2: pbkdf2Params* {.serializedFieldName: "params".}: Pbkdf2Params of kdfScrypt: scryptParams* {.serializedFieldName: "params".}: ScryptParams message*: string Crypto* = object kdf*: Kdf checksum*: Checksum cipher*: Cipher Keystore* = object crypto*: Crypto description*: ref string pubkey*: ValidatorPubKey path*: KeyPath uuid*: string version*: int NetKeystore* = object crypto*: Crypto description*: ref string pubkey*: lcrypto.PublicKey uuid*: string version*: int RemoteKeystoreFlag* {.pure.} = enum IgnoreSSLVerification RemoteSignerType* {.pure.} = enum Web3Signer RemoteKeystore* = object version*: Option[uint64] description*: Option[string] remoteType*: RemoteSignerType pubkey*: ValidatorPubKey remote*: Uri flags*: set[RemoteKeystoreFlag] KsResult*[T] = Result[T, string] Eth2KeyKind* = enum signingKeyKind # Also known as voting key withdrawalKeyKind UUID* = distinct string WalletName* = distinct string Mnemonic* = distinct string KeyPath* = distinct string KeySeed* = distinct seq[byte] KeystorePass* = object str*: string Credentials* = object mnemonic*: Mnemonic keystore*: Keystore signingKey*: ValidatorPrivKey withdrawalKey*: ValidatorPrivKey SimpleHexEncodedTypes = ScryptSalt|ChecksumBytes|CipherBytes const keyLen = 32 scryptParams = ScryptParams( dklen: uint64 keyLen, n: 2^18, p: 1, r: 8 ) pbkdf2Params = Pbkdf2Params( dklen: uint64 keyLen, c: uint64(2^18), prf: HmacSha256 ) # https://eips.ethereum.org/EIPS/eip-2334 eth2KeyPurpose = 12381 eth2CoinType* = 3600 baseKeyPath* = [Natural eth2KeyPurpose, eth2CoinType] # https://github.com/bitcoin/bips/blob/master/bip-0039/bip-0039-wordlists.md wordListLen = 2048 maxWordLen = 16 UUID.serializesAsBaseIn Json KeyPath.serializesAsBaseIn Json WalletName.serializesAsBaseIn Json ChecksumFunctionKind.serializesAsTextInJson CipherFunctionKind.serializesAsTextInJson PrfKind.serializesAsTextInJson KdfKind.serializesAsTextInJson template `$`*(m: Mnemonic): string = string(m) template `==`*(lhs, rhs: WalletName): bool = string(lhs) == string(rhs) template `$`*(x: WalletName): string = string(x) # TODO: `burnMem` in nimcrypto could use distinctBase # to make its usage less error-prone. template burnMem*(m: var (Mnemonic|TaintedString)) = ncrutils.burnMem(string m) template burnMem*(m: var KeySeed) = ncrutils.burnMem(distinctBase m) template burnMem*(m: var KeystorePass) = ncrutils.burnMem(m.str) func longName*(wallet: Wallet): string = if wallet.name.string == wallet.uuid.string: wallet.name.string else: wallet.name.string & " (" & wallet.uuid.string & ")" proc getRandomBytes*(rng: var BrHmacDrbgContext, n: Natural): seq[byte] {.raises: [Defect].} = result = newSeq[byte](n) brHmacDrbgGenerate(rng, result) macro wordListArray*(filename: static string, maxWords: static int = 0, minWordLen: static int = 0, maxWordLen: static int = high(int)): untyped = result = newTree(nnkBracket) var words = slurp(filename.replace('\\', '/')).splitLines() for word in words: if word.len >= minWordLen and word.len <= maxWordLen: result.add newCall("cstring", newLit(word)) if maxWords > 0 and result.len >= maxWords: return const englishWords = wordListArray("english_word_list.txt", maxWords = wordListLen, maxWordLen = maxWordLen) englishWordsDigest = "AD90BF3BEB7B0EB7E5ACD74727DC0DA96E0A280A258354E7293FB7E211AC03DB".toDigest proc checkEnglishWords(): bool = if len(englishWords) != wordListLen: false else: var ctx: sha256 ctx.init() for item in englishWords: ctx.update($item) ctx.finish() == englishWordsDigest static: doAssert(checkEnglishWords(), "English words array is corrupted!") func validateKeyPath*(path: TaintedString): Result[KeyPath, cstring] = var digitCount: int var number: BiggestUint try: for elem in path.string.split("/"): # TODO: doesn't "m" have to be the first character and is it the only # place where it is valid? if elem == "m": continue # parseBiggestUInt can raise if overflow digitCount = elem.parseBiggestUInt(number) if digitCount == 0: return err("Invalid derivation path") except ValueError: return err("KeyPath contains invalid number(s)") return ok(KeyPath path) iterator pathNodes(path: KeyPath): Natural = # TODO: we have exceptions there # and this iterator is used to derive secret keys # if we fail we want to scrub secrets from memory try: for elem in path.string.split("/"): if elem == "m": continue yield parseBiggestUInt(elem) except ValueError: doAssert false, "Make sure you've validated the key path with `validateKeyPath`" func makeKeyPath*(validatorIdx: Natural, keyType: Eth2KeyKind): KeyPath = # https://eips.ethereum.org/EIPS/eip-2334 let use = case keyType of withdrawalKeyKind: "0" of signingKeyKind: "0/0" try: KeyPath &"m/{eth2KeyPurpose}/{eth2CoinType}/{validatorIdx}/{use}" except ValueError: raiseAssert "All values above can be converted successfully to strings" func isControlRune(r: Rune): bool = let r = int r (r >= 0 and r < 0x20) or (r >= 0x7F and r < 0xA0) proc init*(T: type KeystorePass, input: string): T = for rune in toNFKD(input): if not isControlRune(rune): result.str.add rune func getSeed*(mnemonic: Mnemonic, password: KeystorePass): KeySeed = # https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki#from-mnemonic-to-seed let salt = toNFKD("mnemonic" & password.str) KeySeed sha512.pbkdf2(mnemonic.string, salt, 2048, 64) template add(m: var Mnemonic, s: cstring) = m.string.add s proc generateMnemonic*( rng: var BrHmacDrbgContext, words: openArray[cstring] = englishWords, entropyParam: openArray[byte] = @[]): Mnemonic = ## Generates a valid BIP-0039 mnenomic: ## https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki#generating-the-mnemonic var entropy: seq[byte] if entropyParam.len == 0: setLen(entropy, 32) brHmacDrbgGenerate(rng, entropy) else: doAssert entropyParam.len >= 128 and entropyParam.len <= 256 and entropyParam.len mod 32 == 0 entropy = @entropyParam let checksumBits = entropy.len div 4 # ranges from 4 to 8 mnemonicWordCount = 12 + (checksumBits - 4) * 3 checksum = sha256.digest(entropy) entropy.add byte(checksum.data.getBitsBE(0 ..< checksumBits)) # Make sure the string won't be reallocated as this may # leave partial copies of the mnemonic in memory: result = Mnemonic newStringOfCap(mnemonicWordCount * maxWordLen) result.add words[entropy.getBitsBE(0..10)] for i in 1 ..< mnemonicWordCount: let firstBit = i*11 lastBit = firstBit + 10 result.add " " result.add words[entropy.getBitsBE(firstBit..lastBit)] proc cmpIgnoreCase(lhs: cstring, rhs: string): int = # TODO: This is a bit silly. # Nim should have a `cmp` function for C strings. cmpIgnoreCase($lhs, rhs) proc validateMnemonic*(inputWords: TaintedString, outputMnemonic: var Mnemonic): bool = ## Accept a case-insensitive input string and returns `true` ## if it represents a valid mnenomic. The `outputMnemonic` ## value will be populated with a normalized lower-case ## version of the mnemonic using a single space separator. ## ## The `outputMnemonic` value may be populated partially ## with sensitive data even in case of validator failure. ## Make sure to burn the received data after usage. let words = strutils.strip(inputWords.string.toNFKD).split(Whitespace) if words.len < 12 or words.len > 24 or words.len mod 3 != 0: return false # Make sure the string won't be re-allocated as this may # leave partial copies of the mnemonic in memory: outputMnemonic = Mnemonic newStringOfCap(words.len * maxWordLen) for word in words: let foundIdx = binarySearch(englishWords, word, cmpIgnoreCase) if foundIdx == -1: return false if outputMnemonic.string.len > 0: outputMnemonic.add " " outputMnemonic.add englishWords[foundIdx] return true proc deriveChildKey*(parentKey: ValidatorPrivKey, index: Natural): ValidatorPrivKey = let success = derive_child_secretKey(SecretKey result, SecretKey parentKey, uint32 index) # TODO `derive_child_secretKey` is reporting pre-condition # failures with return values. We should turn the checks # into asserts inside the function. doAssert success proc deriveMasterKey*(seed: KeySeed): ValidatorPrivKey = let success = derive_master_secretKey(SecretKey result, seq[byte] seed) # TODO `derive_master_secretKey` is reporting pre-condition # failures with return values. We should turn the checks # into asserts inside the function. doAssert success proc deriveMasterKey*(mnemonic: Mnemonic, password: KeystorePass): ValidatorPrivKey = deriveMasterKey(getSeed(mnemonic, password)) proc deriveChildKey*(masterKey: ValidatorPrivKey, path: KeyPath): ValidatorPrivKey = result = masterKey for idx in pathNodes(path): result = deriveChildKey(result, idx) proc deriveChildKey*(masterKey: ValidatorPrivKey, path: openArray[Natural]): ValidatorPrivKey = result = masterKey for idx in path: # TODO: we have exceptions in pathNodes unless `validateKeyPath` # was called, # and this iterator is used to derive secret keys # if we fail we want to scrub secrets from memory result = deriveChildKey(result, idx) proc keyFromPath*(mnemonic: Mnemonic, password: KeystorePass, path: KeyPath): ValidatorPrivKey = deriveChildKey(deriveMasterKey(mnemonic, password), path) proc shaChecksum(key, cipher: openArray[byte]): Sha256Digest = var ctx: sha256 ctx.init() ctx.update(key) ctx.update(cipher) result = ctx.finish() ctx.clear() proc writeJsonHexString(s: OutputStream, data: openArray[byte]) {.raises: [IOError, Defect].} = s.write '"' s.write ncrutils.toHex(data, {HexFlags.LowerCase}) s.write '"' proc readValue*(r: var JsonReader, value: var Pbkdf2Salt) {.raises: [SerializationError, IOError, Defect].} = var s = r.readValue(string) if s.len == 0 or s.len mod 16 != 0: r.raiseUnexpectedValue( "The Pbkdf2Salt salt must have a non-zero length divisible by 16") value = Pbkdf2Salt ncrutils.fromHex(s) let length = len(seq[byte](value)) if length == 0 or (length mod 8) != 0: r.raiseUnexpectedValue( "The Pbkdf2Salt must be a valid hex string") proc readValue*(r: var JsonReader, value: var Aes128CtrIv) {.raises: [SerializationError, IOError, Defect].} = var s = r.readValue(string) if s.len != 32: r.raiseUnexpectedValue( "The aes-128-ctr IV must be a string of length 32") value = Aes128CtrIv ncrutils.fromHex(s) if len(seq[byte](value)) != 16: r.raiseUnexpectedValue( "The aes-128-ctr IV must be a valid hex string") proc readValue*[T: SimpleHexEncodedTypes](r: var JsonReader, value: var T) {.raises: [SerializationError, IOError, Defect].} = value = T ncrutils.fromHex(r.readValue(string)) if len(seq[byte](value)) == 0: r.raiseUnexpectedValue("Valid hex string expected") proc readValue*(r: var JsonReader, value: var Kdf) {.raises: [SerializationError, IOError, Defect].} = var functionSpecified = false paramsSpecified = false for fieldName in readObjectFields(r): case fieldName of "function": value.function = r.readValue(KdfKind) functionSpecified = true of "params": if functionSpecified: case value.function of kdfPbkdf2: r.readValue(value.pbkdf2Params) of kdfScrypt: r.readValue(value.scryptParams) else: r.raiseUnexpectedValue( "The 'params' field must be specified after the 'function' field") paramsSpecified = true of "message": r.readValue(value.message) else: r.raiseUnexpectedField(fieldName, "Kdf") if not (functionSpecified and paramsSpecified): r.raiseUnexpectedValue( "The Kdf value should have sub-fields named 'function' and 'params'") proc readValue*(r: var JsonReader, value: var RemoteKeystore) {.raises: [SerializationError, IOError, Defect].} = var version: Option[uint64] description: Option[string] remote: Option[Uri] remoteType: Option[string] ignoreSslVerification: Option[bool] pubkey: Option[ValidatorPubKey] for fieldName in readObjectFields(r): case fieldName: of "pubkey": if pubkey.isSome(): r.raiseUnexpectedField("Multiple `pubkey` fields found", "RemoteKeystore") let res = r.readValue(ValidatorPubKey) pubkey = some(res) value.pubkey = res of "remote": if remote.isSome(): r.raiseUnexpectedField("Multiple `remote` fields found", "RemoteKeystore") let res = r.readValue(Uri) remote = some(res) value.remote = res of "version": if version.isSome(): r.raiseUnexpectedField("Multiple `version` fields found", "RemoteKeystore") value.version = some(r.readValue(uint64)) of "description": let res = r.readValue(string) if value.description.isSome(): value.description = some(value.description.get() & "\n" & res) else: value.description = some(res) of "ignore_ssl_verification": if ignoreSslVerification.isSome(): r.raiseUnexpectedField("Multiple conflicting options found", "RemoteKeystore") let res = r.readValue(bool) ignoreSslVerification = some(res) if res: value.flags.incl(RemoteKeystoreFlag.IgnoreSSLVerification) else: value.flags.excl(RemoteKeystoreFlag.IgnoreSSLVerification) of "type": if remoteType.isSome(): r.raiseUnexpectedField("Multiple `type` fields found", "RemoteKeystore") let res = r.readValue(string) remoteType = some(res) case res of "web3signer": value.remoteType = RemoteSignerType.Web3Signer else: r.raiseUnexpectedValue("Unsupported remote signer `type` value") else: # Ignore unknown field names. discard if remote.isNone(): r.raiseUnexpectedValue("Field remote is missing") if pubkey.isNone(): r.raiseUnexpectedValue("Field pubkey is missing") # Set default remote signer type to `Web3Signer`. if remoteType.isNone(): value.remoteType = RemoteSignerType.Web3Signer template writeValue*(w: var JsonWriter, value: Pbkdf2Salt|SimpleHexEncodedTypes|Aes128CtrIv) = writeJsonHexString(w.stream, distinctBase value) template bytes(value: Pbkdf2Salt|SimpleHexEncodedTypes|Aes128CtrIv): seq[byte] = distinctBase value func scrypt(password: openArray[char], salt: openArray[byte], N, r, p, keyLen: static[int]): array[keyLen, byte] = let (xyvLen, bLen) = scryptCalc(N, r, p) var xyv = newSeq[uint32](xyvLen) var b = newSeq[byte](bLen) discard scrypt(password, salt, N, r, p, xyv, b, result) func areValid(params: Pbkdf2Params): bool = # https://www.ietf.org/rfc/rfc2898.txt if params.c == 0 or params.dkLen == 0 or params.salt.bytes.len == 0: return false let hLen = case params.prf of HmacSha256: 256 / 8 params.dklen <= high(uint32).uint64 * hLen.uint64 func areValid(params: ScryptParams): bool = params.dklen == scryptParams.dklen and params.n == scryptParams.n and params.r == scryptParams.r and params.p == scryptParams.p and params.salt.bytes.len > 0 proc decryptCryptoField*(crypto: Crypto, password: KeystorePass, outSecret: var seq[byte]): DecryptionStatus = if crypto.cipher.message.bytes.len == 0: return InvalidKeystore let decKey = case crypto.kdf.function of kdfPbkdf2: template params: auto = crypto.kdf.pbkdf2Params if not params.areValid or params.c > high(int).uint64: return InvalidKeystore sha256.pbkdf2(password.str, params.salt.bytes, int params.c, int params.dklen) of kdfScrypt: template params: auto = crypto.kdf.scryptParams if not params.areValid: return InvalidKeystore @(scrypt(password.str, params.salt.bytes, scryptParams.n, scryptParams.r, scryptParams.p, int scryptParams.dklen)) let derivedChecksum = shaChecksum(decKey.toOpenArray(16, 31), crypto.cipher.message.bytes) if derivedChecksum != crypto.checksum.message: return InvalidPassword var aesCipher: CTR[aes128] outSecret.setLen(crypto.cipher.message.bytes.len) aesCipher.init(decKey.toOpenArray(0, 15), crypto.cipher.params.iv.bytes) aesCipher.decrypt(crypto.cipher.message.bytes, outSecret) aesCipher.clear() return Success func cstringToStr(v: cstring): string = $v proc decryptKeystore*(keystore: Keystore, password: KeystorePass): KsResult[ValidatorPrivKey] = var secret: seq[byte] defer: burnMem(secret) let status = decryptCryptoField(keystore.crypto, password, secret) case status of Success: ValidatorPrivKey.fromRaw(secret).mapErr(cstringToStr) else: err $status proc decryptKeystore*(keystore: JsonString, password: KeystorePass): KsResult[ValidatorPrivKey] = let keystore = try: Json.decode(keystore.string, Keystore) except SerializationError as e: return err e.formatMsg("") decryptKeystore(keystore, password) proc writeValue*(writer: var JsonWriter, value: lcrypto.PublicKey) {. inline, raises: [IOError, Defect].} = writer.writeValue(ncrutils.toHex(value.getBytes().get(), {HexFlags.LowerCase})) proc readValue*(reader: var JsonReader, value: var lcrypto.PublicKey) {. raises: [SerializationError, IOError, Defect].} = let res = init(lcrypto.PublicKey, reader.readValue(string)) if res.isOk(): value = res.get() else: # TODO: Can we provide better diagnostic? raiseUnexpectedValue(reader, "Valid hex-encoded public key expected") proc decryptNetKeystore*(nkeystore: NetKeystore, password: KeystorePass): KsResult[lcrypto.PrivateKey] = var secret: seq[byte] defer: burnMem(secret) let status = decryptCryptoField(nkeystore.crypto, password, secret) case status of Success: let res = lcrypto.PrivateKey.init(secret) if res.isOk: ok res.get else: err "Invalid key" else: err $status proc decryptNetKeystore*(nkeystore: JsonString, password: KeystorePass): KsResult[lcrypto.PrivateKey] = try: let keystore = Json.decode(string(nkeystore), NetKeystore) return decryptNetKeystore(keystore, password) except SerializationError as exc: return err(exc.formatMsg("")) proc createCryptoField(kdfKind: KdfKind, rng: var BrHmacDrbgContext, secret: openArray[byte], password = KeystorePass.init "", salt: openArray[byte] = @[], iv: openArray[byte] = @[]): Crypto = type AES = aes128 let kdfSalt = if salt.len > 0: doAssert salt.len == keyLen @salt else: getRandomBytes(rng, keyLen) let aesIv = if iv.len > 0: doAssert iv.len == AES.sizeBlock @iv else: getRandomBytes(rng, AES.sizeBlock) var decKey: seq[byte] let kdf = case kdfKind of kdfPbkdf2: decKey = sha256.pbkdf2(password.str, kdfSalt, int pbkdf2Params.c, int pbkdf2Params.dklen) var params = pbkdf2Params params.salt = Pbkdf2Salt kdfSalt Kdf(function: kdfPbkdf2, pbkdf2Params: params, message: "") of kdfScrypt: decKey = @(scrypt(password.str, kdfSalt, scryptParams.n, scryptParams.r, scryptParams.p, keyLen)) var params = scryptParams params.salt = ScryptSalt kdfSalt Kdf(function: kdfScrypt, scryptParams: params, message: "") var aesCipher: CTR[AES] cipherMsg = newSeq[byte](secret.len) aesCipher.init(decKey.toOpenArray(0, 15), aesIv) aesCipher.encrypt(secret, cipherMsg) aesCipher.clear() let sum = shaChecksum(decKey.toOpenArray(16, 31), cipherMsg) Crypto( kdf: kdf, checksum: Checksum( function: sha256Checksum, message: sum), cipher: Cipher( function: aes128CtrCipher, params: Aes128CtrParams(iv: Aes128CtrIv aesIv), message: CipherBytes cipherMsg)) proc createNetKeystore*(kdfKind: KdfKind, rng: var BrHmacDrbgContext, privKey: lcrypto.PrivateKey, password = KeystorePass.init "", description = "", salt: openArray[byte] = @[], iv: openArray[byte] = @[]): NetKeystore = let secret = privKey.getBytes().get() cryptoField = createCryptoField(kdfKind, rng, secret, password, salt, iv) pubKey = privKey.getPublicKey().get() uuid = uuidGenerate().expect("Random bytes should be available") NetKeystore( crypto: cryptoField, pubkey: pubKey, description: newClone(description), uuid: $uuid, version: 1 ) proc createKeystore*(kdfKind: KdfKind, rng: var BrHmacDrbgContext, privKey: ValidatorPrivkey, password = KeystorePass.init "", path = KeyPath "", description = "", salt: openArray[byte] = @[], iv: openArray[byte] = @[]): Keystore = let secret = privKey.toRaw[^32..^1] cryptoField = createCryptoField(kdfKind, rng, secret, password, salt, iv) pubkey = privKey.toPubKey() uuid = uuidGenerate().expect("Random bytes should be available") Keystore( crypto: cryptoField, pubkey: pubkey.toPubKey(), path: path, description: newClone(description), uuid: $uuid, version: 4) proc createWallet*(kdfKind: KdfKind, rng: var BrHmacDrbgContext, seed: KeySeed, name = WalletName "", salt: openArray[byte] = @[], iv: openArray[byte] = @[], password = KeystorePass.init "", nextAccount = none(Natural), pretty = true): Wallet = let uuid = UUID $(uuidGenerate().expect("Random bytes should be available")) crypto = createCryptoField(kdfKind, rng, distinctBase seed, password, salt, iv) Wallet( uuid: uuid, name: if name.string.len > 0: name else: WalletName(uuid), version: 1, walletType: "hierarchical deterministic", crypto: crypto, nextAccount: nextAccount.get(0)) # https://github.com/ethereum/consensus-specs/blob/v0.12.2/specs/phase0/deposit-contract.md#withdrawal-credentials func makeWithdrawalCredentials*(k: ValidatorPubKey): Eth2Digest = var bytes = eth2digest(k.toRaw()) bytes.data[0] = BLS_WITHDRAWAL_PREFIX.uint8 bytes # https://github.com/ethereum/consensus-specs/blob/v0.12.2/specs/phase0/deposit-contract.md#withdrawal-credentials proc makeWithdrawalCredentials*(k: CookedPubKey): Eth2Digest = makeWithdrawalCredentials(k.toPubKey()) proc prepareDeposit*(cfg: RuntimeConfig, withdrawalPubKey: CookedPubKey, signingKey: ValidatorPrivKey, signingPubKey: CookedPubKey, amount = MAX_EFFECTIVE_BALANCE.Gwei): DepositData = var res = DepositData( amount: amount, pubkey: signingPubKey.toPubKey(), withdrawal_credentials: makeWithdrawalCredentials(withdrawalPubKey)) res.signature = get_deposit_signature(cfg, res, signingKey).toValidatorSig() return res