{.push raises: [Defect].} import typetraits, tables, stew/[results, objects, endians2, io2], serialization, chronicles, snappy, eth/db/[kvstore, kvstore_sqlite3], ./network_metadata, ./spec/[datatypes, digest, crypto, state_transition], ./ssz/[ssz_serialization, merkleization], merkle_minimal, filepath type DbSeq*[T] = object insertStmt: SqliteStmt[openArray[byte], void] selectStmt: SqliteStmt[int64, openArray[byte]] recordCount: int64 DbMap*[K, V] = object db: SqStoreRef keyspace: int DepositsSeq = DbSeq[DepositData] DepositsMerkleizer* = SszMerkleizer[depositContractLimit] DepositContractSnapshot* = object eth1Block*: Eth2Digest depositContractState*: DepositContractState BeaconChainDB* = ref object ## Database storing resolved blocks and states - resolved blocks are such ## blocks that form a chain back to the tail block. ## ## We assume that the database backend is working / not corrupt - as such, ## we will raise a Defect any time there is an issue. This should be ## revisited in the future, when/if the calling code safely can handle ## corruption of this kind. ## ## We do however make an effort not to crash on invalid data inside the ## database - this may have a number of "natural" causes such as switching ## between different versions of the client and accidentally using an old ## database. backend: KvStoreRef preset: RuntimePreset genesisDeposits*: DepositsSeq checkpoint*: proc() {.gcsafe.} Keyspaces* = enum defaultKeyspace = "kvstore" validatorIndexFromPubKey DbKeyKind = enum kHashToState kHashToBlock kHeadBlock ## Pointer to the most recent block selected by the fork choice kTailBlock ## Pointer to the earliest finalized block - this is the genesis block when ## the chain starts, but might advance as the database gets pruned ## TODO: determine how aggressively the database should be pruned. For a ## healthy network sync, we probably need to store blocks at least ## past the weak subjectivity period. kBlockSlotStateRoot ## BlockSlot -> state_root mapping kGenesisBlockRoot ## Immutable reference to the network genesis state ## (needed for satisfying requests to the beacon node API). kEth1PersistedTo ## (Obsolete) Used to point to the the latest ETH1 block hash which ## satisfied the follow distance and had its deposits persisted to disk. kDepositsFinalizedByEth1 ## A merkleizer checkpoint which can be used for computing the ## `deposit_root` of all eth1 finalized deposits (i.e. deposits ## confirmed by ETH1_FOLLOW_DISTANCE blocks). The `deposit_root` ## is acknowledged and confirmed by the attached web3 provider. kDepositsFinalizedByEth2 ## A merkleizer checkpoint used for computing merkle proofs of ## deposits added to Eth2 blocks (it may lag behind the finalized ## eth1 deposits checkpoint). kHashToBlockSummary ## Cache of beacon block summaries - during startup when we construct the ## chain dag, loading full blocks takes a lot of time - the block ## summary contains a minimal snapshot of what's needed to instanciate ## the BlockRef tree. kSpeculativeDeposits ## A merkelizer checkpoint created on the basis of deposit events ## that we were not able to verify against a `deposit_root` served ## by the web3 provider. This may happen on Geth nodes that serve ## only recent contract state data (i.e. only recent `deposit_roots`). kHashToStateDiff ## Instead of storing full BeaconStates, one can store only the diff from ## a different state. As 75% of a typical BeaconState's serialized form's ## the validators, which are mostly immutable and append-only, just using ## a simple append-diff representation helps significantly. Various roots ## are stored in a mod-increment pattern across fixed-sized arrays, which ## addresses most of the rest of the BeaconState sizes. BeaconBlockSummary* = object slot*: Slot parent_root*: Eth2Digest const # The largest object we're saving is the BeaconState, and by far, the largest # part of it is the validator - each validator takes up at least 129 bytes # in phase0, which means 100k validators is >12mb - in addition to this, # there are several MB of hashes. maxDecompressedDbRecordSize = 64*1024*1024 # Subkeys essentially create "tables" within the key-value store by prefixing # each entry with a table id func subkey(kind: DbKeyKind): array[1, byte] = result[0] = byte ord(kind) func subkey[N: static int](kind: DbKeyKind, key: array[N, byte]): array[N + 1, byte] = result[0] = byte ord(kind) result[1 .. ^1] = key func subkey(kind: type BeaconState, key: Eth2Digest): auto = subkey(kHashToState, key.data) func subkey(kind: type SignedBeaconBlock, key: Eth2Digest): auto = subkey(kHashToBlock, key.data) func subkey(kind: type BeaconBlockSummary, key: Eth2Digest): auto = subkey(kHashToBlockSummary, key.data) func subkey(kind: type BeaconStateDiff, key: Eth2Digest): auto = subkey(kHashToStateDiff, key.data) func subkey(root: Eth2Digest, slot: Slot): array[40, byte] = var ret: array[40, byte] # big endian to get a naturally ascending order on slots in sorted indices ret[0..<8] = toBytesBE(slot.uint64) # .. but 7 bytes should be enough for slots - in return, we get a nicely # rounded key length ret[0] = byte ord(kBlockSlotStateRoot) ret[8..<40] = root.data ret template panic = # TODO(zah): Could we recover from a corrupted database? # Review all usages. raiseAssert "The database should not be corrupted" proc init*[T](Seq: type DbSeq[T], db: SqStoreRef, name: string): Seq = db.exec(""" CREATE TABLE IF NOT EXISTS """ & name & """( id INTEGER PRIMARY KEY, value BLOB ); """).expect "working database" let insertStmt = db.prepareStmt( "INSERT INTO " & name & "(value) VALUES (?);", openArray[byte], void).expect("this is a valid statement") selectStmt = db.prepareStmt( "SELECT value FROM " & name & " WHERE id = ?;", int64, openArray[byte]).expect("this is a valid statement") countStmt = db.prepareStmt( "SELECT COUNT(1) FROM " & name & ";", NoParams, int64).expect("this is a valid statement") var recordCount = int64 0 let countQueryRes = countStmt.exec do (res: int64): recordCount = res let found = countQueryRes.expect("working database") if not found: panic() Seq(insertStmt: insertStmt, selectStmt: selectStmt, recordCount: recordCount) proc add*[T](s: var DbSeq[T], val: T) = var bytes = SSZ.encode(val) s.insertStmt.exec(bytes).expect "working database" inc s.recordCount template len*[T](s: DbSeq[T]): uint64 = s.recordCount.uint64 proc get*[T](s: DbSeq[T], idx: uint64): T = # This is used only locally let resultAddr = addr result let queryRes = s.selectStmt.exec(int64(idx) + 1) do (recordBytes: openArray[byte]): try: resultAddr[] = decode(SSZ, recordBytes, T) except SerializationError: panic() let found = queryRes.expect("working database") if not found: panic() proc createMap*(db: SqStoreRef, keyspace: int; K, V: distinct type): DbMap[K, V] = DbMap[K, V](db: db, keyspace: keyspace) proc insert*[K, V](m: var DbMap[K, V], key: K, value: V) = m.db.put(m.keyspace, SSZ.encode key, SSZ.encode value).expect("working database") proc contains*[K, V](m: DbMap[K, V], key: K): bool = contains(m.db, SSZ.encode key).expect("working database") template insert*[K, V](t: var Table[K, V], key: K, value: V) = add(t, key, value) proc init*(T: type BeaconChainDB, preset: RuntimePreset, dir: string, inMemory = false): BeaconChainDB = if inMemory: # TODO # To support testing, the inMemory store should offer the complete # functionalityof the database-backed one (i.e. tracking of deposits # and validators) T(backend: kvStore MemStoreRef.init(), preset: preset) else: let s = secureCreatePath(dir) doAssert s.isOk # TODO(zah) Handle this in a better way let sqliteStore = SqStoreRef.init( dir, "nbc", Keyspaces, manualCheckpoint = true).expect("working database") # Remove the deposits table we used before we switched # to storing only deposit contract checkpoints if sqliteStore.exec("DROP TABLE IF EXISTS deposits;").isErr: debug "Failed to drop the deposits table" var validatorKeyToIndex = initTable[ValidatorPubKey, ValidatorIndex]() genesisDepositsSeq = DbSeq[DepositData].init(sqliteStore, "genesis_deposits") T(backend: kvStore sqliteStore, preset: preset, genesisDeposits: genesisDepositsSeq, checkpoint: proc() = sqliteStore.checkpoint() ) proc snappyEncode(inp: openArray[byte]): seq[byte] = try: snappy.encode(inp) except CatchableError as err: raiseAssert err.msg proc put(db: BeaconChainDB, key: openArray[byte], v: Eth2Digest) = db.backend.put(key, v.data).expect("working database") proc put(db: BeaconChainDB, key: openArray[byte], v: auto) = db.backend.put(key, snappyEncode(SSZ.encode(v))).expect("working database") proc get(db: BeaconChainDB, key: openArray[byte], T: type Eth2Digest): Opt[T] = var res: Opt[T] proc decode(data: openArray[byte]) = if data.len == 32: res.ok Eth2Digest(data: toArray(32, data)) else: # If the data can't be deserialized, it could be because it's from a # version of the software that uses a different SSZ encoding warn "Unable to deserialize data, old database?", typ = name(T), dataLen = data.len discard discard db.backend.get(key, decode).expect("working database") res type GetResult = enum found = "Found" notFound = "Not found" corrupted = "Corrupted" proc get[T](db: BeaconChainDB, key: openArray[byte], output: var T): GetResult = var status = GetResult.notFound # TODO address is needed because there's no way to express lifetimes in nim # we'll use unsafeAddr to find the code later var outputPtr = unsafeAddr output # callback is local, ptr wont escape proc decode(data: openArray[byte]) = try: let decompressed = snappy.decode(data, maxDecompressedDbRecordSize) if decompressed.len > 0: outputPtr[] = SSZ.decode(decompressed, T, updateRoot = false) status = GetResult.found else: warn "Corrupt snappy record found in database", typ = name(T) status = GetResult.corrupted except SerializationError as e: # If the data can't be deserialized, it could be because it's from a # version of the software that uses a different SSZ encoding warn "Unable to deserialize data, old database?", err = e.msg, typ = name(T), dataLen = data.len status = GetResult.corrupted discard db.backend.get(key, decode).expect("working database") status proc close*(db: BeaconChainDB) = discard db.backend.close() func toBeaconBlockSummary(v: SomeBeaconBlock): BeaconBlockSummary = BeaconBlockSummary( slot: v.slot, parent_root: v.parent_root, ) proc putBlock*(db: BeaconChainDB, value: SignedBeaconBlock) = db.put(subkey(type value, value.root), value) db.put(subkey(BeaconBlockSummary, value.root), value.message.toBeaconBlockSummary()) proc putBlock*(db: BeaconChainDB, value: TrustedSignedBeaconBlock) = db.put(subkey(SignedBeaconBlock, value.root), value) db.put(subkey(BeaconBlockSummary, value.root), value.message.toBeaconBlockSummary()) proc putState*(db: BeaconChainDB, key: Eth2Digest, value: BeaconState) = # TODO prune old states - this is less easy than it seems as we never know # when or if a particular state will become finalized. db.put(subkey(type value, key), value) proc putState*(db: BeaconChainDB, value: BeaconState) = db.putState(hash_tree_root(value), value) proc putStateRoot*(db: BeaconChainDB, root: Eth2Digest, slot: Slot, value: Eth2Digest) = db.put(subkey(root, slot), value) proc putStateDiff*(db: BeaconChainDB, root: Eth2Digest, value: BeaconStateDiff) = db.put(subkey(BeaconStateDiff, root), value) proc delBlock*(db: BeaconChainDB, key: Eth2Digest) = db.backend.del(subkey(SignedBeaconBlock, key)).expect("working database") db.backend.del(subkey(BeaconBlockSummary, key)).expect("working database") proc delState*(db: BeaconChainDB, key: Eth2Digest) = db.backend.del(subkey(BeaconState, key)).expect("working database") proc delStateRoot*(db: BeaconChainDB, root: Eth2Digest, slot: Slot) = db.backend.del(subkey(root, slot)).expect("working database") proc delStateDiff*(db: BeaconChainDB, root: Eth2Digest) = db.backend.del(subkey(BeaconStateDiff, root)).expect("working database") proc putHeadBlock*(db: BeaconChainDB, key: Eth2Digest) = db.put(subkey(kHeadBlock), key) proc putTailBlock*(db: BeaconChainDB, key: Eth2Digest) = db.put(subkey(kTailBlock), key) proc putGenesisBlockRoot*(db: BeaconChainDB, key: Eth2Digest) = db.put(subkey(kGenesisBlockRoot), key) proc putEth1FinalizedTo*(db: BeaconChainDB, eth1Checkpoint: DepositContractSnapshot) = db.put(subkey(kDepositsFinalizedByEth1), eth1Checkpoint) proc putEth2FinalizedTo*(db: BeaconChainDB, eth1Checkpoint: DepositContractSnapshot) = db.put(subkey(kDepositsFinalizedByEth2), eth1Checkpoint) proc putSpeculativeDeposits*(db: BeaconChainDB, eth1Checkpoint: DepositContractSnapshot) = db.put(subkey(kSpeculativeDeposits), eth1Checkpoint) proc getBlock*(db: BeaconChainDB, key: Eth2Digest): Opt[TrustedSignedBeaconBlock] = # We only store blocks that we trust in the database result.ok(TrustedSignedBeaconBlock()) if db.get(subkey(SignedBeaconBlock, key), result.get) != GetResult.found: result.err() else: # set root after deserializing (so it doesn't get zeroed) result.get().root = key proc getBlockSummary*(db: BeaconChainDB, key: Eth2Digest): Opt[BeaconBlockSummary] = # We only store blocks that we trust in the database result.ok(BeaconBlockSummary()) if db.get(subkey(BeaconBlockSummary, key), result.get) != GetResult.found: result.err() proc getState*( db: BeaconChainDB, key: Eth2Digest, output: var BeaconState, rollback: RollbackProc): bool = ## Load state into `output` - BeaconState is large so we want to avoid ## re-allocating it if possible ## Return `true` iff the entry was found in the database and `output` was ## overwritten. ## Rollback will be called only if output was partially written - if it was ## not found at all, rollback will not be called # TODO rollback is needed to deal with bug - use `noRollback` to ignore: # https://github.com/nim-lang/Nim/issues/14126 # TODO RVO is inefficient for large objects: # https://github.com/nim-lang/Nim/issues/13879 case db.get(subkey(BeaconState, key), output) of GetResult.found: true of GetResult.notFound: false of GetResult.corrupted: rollback(output) false proc getStateRoot*(db: BeaconChainDB, root: Eth2Digest, slot: Slot): Opt[Eth2Digest] = db.get(subkey(root, slot), Eth2Digest) proc getStateDiff*(db: BeaconChainDB, root: Eth2Digest): Opt[BeaconStateDiff] = result.ok(BeaconStateDiff()) if db.get(subkey(BeaconStateDiff, root), result.get) != GetResult.found: result.err proc getHeadBlock*(db: BeaconChainDB): Opt[Eth2Digest] = db.get(subkey(kHeadBlock), Eth2Digest) proc getTailBlock*(db: BeaconChainDB): Opt[Eth2Digest] = db.get(subkey(kTailBlock), Eth2Digest) proc getGenesisBlockRoot*(db: BeaconChainDB): Eth2Digest = db.get(subkey(kGenesisBlockRoot), Eth2Digest).expect( "The database must be seeded with the genesis state") proc getEth1FinalizedTo*(db: BeaconChainDB): Opt[DepositContractSnapshot] = result.ok(DepositContractSnapshot()) let r = db.get(subkey(kDepositsFinalizedByEth1), result.get) if r != found: result.err() proc getEth2FinalizedTo*(db: BeaconChainDB): Opt[DepositContractSnapshot] = result.ok(DepositContractSnapshot()) let r = db.get(subkey(kDepositsFinalizedByEth2), result.get) if r != found: result.err() proc getSpeculativeDeposits*(db: BeaconChainDB): Opt[DepositContractSnapshot] = result.ok(DepositContractSnapshot()) let r = db.get(subkey(kSpeculativeDeposits), result.get) if r != found: result.err() proc delSpeculativeDeposits*(db: BeaconChainDB) = db.backend.del(subkey(kSpeculativeDeposits)).expect("working database") proc containsBlock*(db: BeaconChainDB, key: Eth2Digest): bool = db.backend.contains(subkey(SignedBeaconBlock, key)).expect("working database") proc containsState*(db: BeaconChainDB, key: Eth2Digest): bool = db.backend.contains(subkey(BeaconState, key)).expect("working database") proc containsStateDiff*(db: BeaconChainDB, key: Eth2Digest): bool = db.backend.contains(subkey(BeaconStateDiff, key)).expect("working database") iterator getAncestors*(db: BeaconChainDB, root: Eth2Digest): TrustedSignedBeaconBlock = ## Load a chain of ancestors for blck - returns a list of blocks with the ## oldest block last (blck will be at result[0]). ## ## The search will go on until the ancestor cannot be found. var res: TrustedSignedBeaconBlock root = root while db.get(subkey(SignedBeaconBlock, root), res) == GetResult.found: res.root = root yield res root = res.message.parent_root iterator getAncestorSummaries*(db: BeaconChainDB, root: Eth2Digest): tuple[root: Eth2Digest, summary: BeaconBlockSummary] = ## Load a chain of ancestors for blck - returns a list of blocks with the ## oldest block last (blck will be at result[0]). ## ## The search will go on until the ancestor cannot be found. var res: tuple[root: Eth2Digest, summary: BeaconBlockSummary] tmp: TrustedSignedBeaconBlock root = root while true: if db.get(subkey(BeaconBlockSummary, root), res.summary) == GetResult.found: res.root = root yield res elif db.get(subkey(SignedBeaconBlock, root), tmp) == GetResult.found: res.summary = tmp.message.toBeaconBlockSummary() db.put(subkey(BeaconBlockSummary, root), res.summary) res.root = root yield res else: break root = res.summary.parent_root