import # Std lib std/[typetraits, strutils, os, algorithm, sequtils, math, sets], std/options as stdOptions, # Status libs stew/[varints, base58, base64, endians2, results, byteutils], bearssl, stew/shims/net as stewNet, stew/shims/[macros, tables], faststreams/[inputs, outputs, buffers], snappy, snappy/framing, json_serialization, json_serialization/std/[net, options], chronos, chronicles, metrics, # TODO: create simpler to use libp2p modules that use re-exports libp2p/[switch, standard_setup, peerinfo, multiaddress, multicodec, crypto/crypto, crypto/secp, protocols/identify, protocols/protocol], libp2p/protocols/secure/[secure, secio], libp2p/protocols/pubsub/[pubsub, floodsub, gossipsub, rpc/message, rpc/messages], libp2p/transports/tcptransport, libp2p/stream/lpstream, eth/[keys, async_utils], eth/p2p/p2p_protocol_dsl, eth/net/nat, eth/p2p/discoveryv5/[enr, node], # Beacon node modules version, conf, eth2_discovery, libp2p_json_serialization, conf, ssz/ssz_serialization, peer_pool, spec/[datatypes, network], ./time export version, multiaddress, peer_pool, peerinfo, p2pProtocol, libp2p_json_serialization, ssz_serialization, results logScope: topics = "networking" type KeyPair* = crypto.KeyPair PublicKey* = crypto.PublicKey PrivateKey* = crypto.PrivateKey Bytes = seq[byte] ErrorMsg = List[byte, 256] # TODO: This is here only to eradicate a compiler # warning about unused import (rpc/messages). GossipMsg = messages.Message SeenItem* = object peerId*: PeerID stamp*: chronos.Moment # TODO Is this really needed? Eth2Node* = ref object of RootObj switch*: Switch pubsub*: PubSub discovery*: Eth2DiscoveryProtocol discoveryEnabled*: bool wantedPeers*: int peerPool*: PeerPool[Peer, PeerID] protocolStates*: seq[RootRef] libp2pTransportLoops*: seq[Future[void]] metadata*: Eth2Metadata connectTimeout*: chronos.Duration seenThreshold*: chronos.Duration connQueue: AsyncQueue[PeerAddr] seenTable: Table[PeerID, SeenItem] connWorkers: seq[Future[void]] connTable: HashSet[PeerID] forkId: ENRForkID rng*: ref BrHmacDrbgContext peers: Table[PeerID, Peer] EthereumNode = Eth2Node # needed for the definitions in p2p_backends_helpers Eth2MetaData* = object seq_number*: uint64 attnets*: BitArray[ATTESTATION_SUBNET_COUNT] ENRForkID* = object fork_digest*: ForkDigest next_fork_version*: Version next_fork_epoch*: Epoch AverageThroughput* = object count*: uint64 average*: float Peer* = ref object network*: Eth2Node info*: PeerInfo discoveryId*: Eth2DiscoveryId connectionState*: ConnectionState protocolStates*: seq[RootRef] maxInactivityAllowed*: Duration netThroughput: AverageThroughput score*: int connections*: int disconnectedFut: Future[void] PeerAddr* = object peerId*: PeerID addrs*: seq[MultiAddress] ConnectionState* = enum None, Connecting, Connected, Disconnecting, Disconnected UntypedResponse = ref object peer*: Peer stream*: Connection writtenChunks*: int SingleChunkResponse*[MsgType] = distinct UntypedResponse ## Protocol requests using this type will produce request-making ## client-side procs that return `NetRes[MsgType]` MultipleChunksResponse*[MsgType] = distinct UntypedResponse ## Protocol requests using this type will produce request-making ## client-side procs that return `NetRes[seq[MsgType]]`. ## In the future, such procs will return an `InputStream[NetRes[MsgType]]`. MessageInfo* = object name*: string # Private fields: libp2pCodecName: string protocolMounter*: MounterProc ProtocolInfoObj* = object name*: string messages*: seq[MessageInfo] index*: int # the position of the protocol in the # ordered list of supported protocols # Private fields: peerStateInitializer*: PeerStateInitializer networkStateInitializer*: NetworkStateInitializer onPeerConnected*: OnPeerConnectedHandler onPeerDisconnected*: OnPeerDisconnectedHandler ProtocolInfo* = ptr ProtocolInfoObj ResponseCode* = enum Success InvalidRequest ServerError PeerStateInitializer* = proc(peer: Peer): RootRef {.gcsafe.} NetworkStateInitializer* = proc(network: EthereumNode): RootRef {.gcsafe.} OnPeerConnectedHandler* = proc(peer: Peer, incoming: bool): Future[void] {.gcsafe.} OnPeerDisconnectedHandler* = proc(peer: Peer): Future[void] {.gcsafe.} ThunkProc* = LPProtoHandler MounterProc* = proc(network: Eth2Node) {.gcsafe.} MessageContentPrinter* = proc(msg: pointer): string {.gcsafe.} DisconnectionReason* = enum # might see other values on the wire! ClientShutDown = 1 IrrelevantNetwork = 2 FaultOrError = 3 PeerDisconnected* = object of CatchableError reason*: DisconnectionReason TransmissionError* = object of CatchableError Eth2NetworkingErrorKind* = enum BrokenConnection ReceivedErrorResponse UnexpectedEOF PotentiallyExpectedEOF InvalidResponseCode InvalidSnappyBytes InvalidSszBytes StreamOpenTimeout ReadResponseTimeout ZeroSizePrefix SizePrefixOverflow Eth2NetworkingError = object case kind*: Eth2NetworkingErrorKind of ReceivedErrorResponse: responseCode: ResponseCode errorMsg: ErrorMsg else: discard NetRes*[T] = Result[T, Eth2NetworkingError] ## This is type returned from all network requests const clientId* = "Nimbus beacon node v" & fullVersionStr networkKeyFilename = "privkey.protobuf" nodeMetadataFilename = "node-metadata.json" TCP = net.Protocol.IPPROTO_TCP HandshakeTimeout = FaultOrError NewPeerScore* = 200 ## Score which will be assigned to new connected Peer PeerScoreLowLimit* = 0 ## Score after which peer will be kicked PeerScoreHighLimit* = 1000 ## Max value of peer's score ConcurrentConnections* = 10 ## Maximum number of active concurrent connection requests. SeenTableTimeTimeout* = when not defined(local_testnet): 5.minutes else: 10.seconds ## Seen period of time for timeout connections SeenTableTimeDeadPeer* = when not defined(local_testnet): 5.minutes else: 10.seconds ## Period of time for dead peers. SeenTableTimeIrrelevantNetwork* = 24.hours ## Period of time for `IrrelevantNetwork` error reason. SeenTableTimeClientShutDown* = 10.minutes ## Period of time for `ClientShutDown` error reason. SeemTableTimeFaultOrError* = 10.minutes ## Period of time for `FaultOnError` error reason. var successfullyDialledAPeer = false # used to show a warning template neterr(kindParam: Eth2NetworkingErrorKind): auto = err(type(result), Eth2NetworkingError(kind: kindParam)) # Metrics for tracking attestation and beacon block loss declareCounter nbc_gossip_messages_sent, "Number of gossip messages sent by this peer" declareCounter nbc_gossip_messages_received, "Number of gossip messages received by this peer" declarePublicCounter nbc_successful_dials, "Number of successfully dialed peers" declarePublicCounter nbc_failed_dials, "Number of dialing attempts that failed" declarePublicCounter nbc_timeout_dials, "Number of dialing attempts that exceeded timeout" declarePublicGauge nbc_peers, "Number of active libp2p peers" proc safeClose(conn: Connection) {.async.} = if not conn.closed: await close(conn) const snappy_implementation {.strdefine.} = "libp2p" const useNativeSnappy = when snappy_implementation == "native": true elif snappy_implementation == "libp2p": false else: {.fatal: "Please set snappy_implementation to either 'libp2p' or 'native'".} const libp2p_pki_schemes {.strdefine.} = "" when libp2p_pki_schemes != "secp256k1": {.fatal: "Incorrect building process, please use -d:\"libp2p_pki_schemes=secp256k1\"".} template libp2pProtocol*(name: string, version: int) {.pragma.} template `$`*(peer: Peer): string = id(peer.info) chronicles.formatIt(Peer): $it chronicles.formatIt(PeerID): $it template remote*(peer: Peer): untyped = peer.info.peerId proc openStream(node: Eth2Node, peer: Peer, protocolId: string): Future[Connection] {.async.} = let protocolId = protocolId & "ssz_snappy" conn = await dial( node.switch, peer.info.peerId, peer.info.addrs, protocolId) # libp2p may replace peerinfo ref sometimes, so make sure we have a recent # one if conn.peerInfo != nil: peer.info = conn.peerInfo return conn proc init*(T: type Peer, network: Eth2Node, info: PeerInfo): Peer {.gcsafe.} proc getPeer*(node: Eth2Node, peerId: PeerID): Peer {.gcsafe.} = node.peers.withValue(peerId, peer) do: return peer[] do: let peer = Peer.init(node, PeerInfo.init(peerId)) return node.peers.mGetOrPut(peerId, peer) proc peerFromStream(network: Eth2Node, conn: Connection): Peer = # TODO: Can this be `nil`? return network.getPeer(conn.peerInfo.peerId) proc getKey*(peer: Peer): PeerID {.inline.} = result = peer.info.peerId proc getFuture*(peer: Peer): Future[void] {.inline.} = if peer.disconnectedFut.isNil: peer.disconnectedFut = newFuture[void]() result = peer.disconnectedFut proc getScore*(a: Peer): int = ## Returns current score value for peer ``peer``. result = a.score proc updateScore*(peer: Peer, score: int) {.inline.} = ## Update peer's ``peer`` score with value ``score``. peer.score = peer.score + score if peer.score > PeerScoreHighLimit: peer.score = PeerScoreHighLimit proc calcThroughput(dur: Duration, value: uint64): float {.inline.} = let secs = float(chronos.seconds(1).nanoseconds) if isZero(dur): 0.0 else: float(value) * (secs / float(dur.nanoseconds)) proc updateNetThroughput*(peer: Peer, dur: Duration, bytesCount: uint64) {.inline.} = ## Update peer's ``peer`` network throughput. let bytesPerSecond = calcThroughput(dur, bytesCount) let a = peer.netThroughput.average let n = peer.netThroughput.count peer.netThroughput.average = a + (bytesPerSecond - a) / float(n + 1) inc(peer.netThroughput.count) proc netBps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Bps for peer ``peer``. round((peer.netThroughput.average * 10_000) / 10_000) proc netKbps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Kbps for peer ``peer``. round(((peer.netThroughput.average / 1024) * 10_000) / 10_000) proc netMbps*(peer: Peer): float {.inline.} = ## Returns current network throughput average value in Mbps for peer ``peer``. round(((peer.netThroughput.average / (1024 * 1024)) * 10_000) / 10_000) proc `<`*(a, b: Peer): bool = ## Comparison function, which first checks peer's scores, and if the peers' ## score is equal it compares peers' network throughput. if a.score < b.score: true elif a.score == b.score: (a.netThroughput.average < b.netThroughput.average) else: false proc isSeen*(network: ETh2Node, peerId: PeerID): bool = let currentTime = now(chronos.Moment) if peerId notin network.seenTable: return false let item = network.seenTable[peerId] if currentTime >= item.stamp: # Peer is in SeenTable, but the time period has expired. network.seenTable.del(peerId) return false return true proc addSeen*(network: ETh2Node, peerId: PeerID, period: chronos.Duration) = let item = SeenItem(peerId: peerId, stamp: now(chronos.Moment) + period) network.seenTable[peerId] = item proc disconnect*(peer: Peer, reason: DisconnectionReason, notifyOtherPeer = false) {.async.} = # TODO: How should we notify the other peer? if peer.connectionState notin {Disconnecting, Disconnected}: peer.connectionState = Disconnecting await peer.network.switch.disconnect(peer.info.peerId) peer.connectionState = Disconnected peer.network.peerPool.release(peer) let seenTime = case reason of ClientShutDown: SeenTableTimeClientShutDown of IrrelevantNetwork: SeenTableTimeIrrelevantNetwork of FaultOrError: SeemTableTimeFaultOrError peer.network.addSeen(peer.info.peerId, seenTime) include eth/p2p/p2p_backends_helpers include eth/p2p/p2p_tracing proc getRequestProtoName(fn: NimNode): NimNode = # `getCustomPragmaVal` doesn't work yet on regular nnkProcDef nodes # (TODO: file as an issue) let pragmas = fn.pragma if pragmas.kind == nnkPragma and pragmas.len > 0: for pragma in pragmas: if pragma.len > 0 and $pragma[0] == "libp2pProtocol": let protoName = $(pragma[1]) let protoVer = $(pragma[2].intVal) return newLit("/eth2/beacon_chain/req/" & protoName & "/" & protoVer & "/") return newLit("") template raisePeerDisconnected(msg: string, r: DisconnectionReason) = var e = newException(PeerDisconnected, msg) e.reason = r raise e proc disconnectAndRaise(peer: Peer, reason: DisconnectionReason, msg: string) {.async.} = let r = reason await peer.disconnect(r) raisePeerDisconnected(msg, r) proc writeChunk*(conn: Connection, responseCode: Option[ResponseCode], payload: Bytes) {.async.} = var output = memoryOutput() if responseCode.isSome: output.write byte(responseCode.get) output.write varintBytes(payload.lenu64) output.write(framingFormatCompress payload) await conn.write(output.getOutput) template errorMsgLit(x: static string): ErrorMsg = const val = ErrorMsg toBytes(x) val proc formatErrorMsg(msg: ErrorMSg): string = let candidate = string.fromBytes(asSeq(msg)) for c in candidate: # TODO UTF-8 - but let's start with ASCII if ord(c) < 32 or ord(c) > 127: return byteutils.toHex(asSeq(msg)) return candidate proc sendErrorResponse(peer: Peer, conn: Connection, responseCode: ResponseCode, errMsg: ErrorMsg) {.async.} = debug "Error processing request", peer, responseCode, errMsg = formatErrorMsg(errMsg) await conn.writeChunk(some responseCode, SSZ.encode(errMsg)) proc sendNotificationMsg(peer: Peer, protocolId: string, requestBytes: Bytes) {.async} = var deadline = sleepAsync RESP_TIMEOUT streamFut = peer.network.openStream(peer, protocolId) await streamFut or deadline if not streamFut.finished: streamFut.cancel() raise newException(TransmissionError, "Failed to open LibP2P stream") let stream = streamFut.read try: await stream.writeChunk(none ResponseCode, requestBytes) finally: await safeClose(stream) proc sendResponseChunkBytes(response: UntypedResponse, payload: Bytes) {.async.} = inc response.writtenChunks await response.stream.writeChunk(some Success, payload) proc sendResponseChunkObj(response: UntypedResponse, val: auto) {.async.} = inc response.writtenChunks await response.stream.writeChunk(some Success, SSZ.encode(val)) template sendUserHandlerResultAsChunkImpl*(stream: Connection, handlerResultFut: Future): untyped = let handlerRes = await handlerResultFut writeChunk(stream, some Success, SSZ.encode(handlerRes)) template sendUserHandlerResultAsChunkImpl*(stream: Connection, handlerResult: auto): untyped = writeChunk(stream, some Success, SSZ.encode(handlerResult)) when useNativeSnappy: include faststreams_backend else: include libp2p_streams_backend proc makeEth2Request(peer: Peer, protocolId: string, requestBytes: Bytes, ResponseMsg: type, timeout: Duration): Future[NetRes[ResponseMsg]] {.gcsafe, async.} = var deadline = sleepAsync timeout let stream = awaitWithTimeout(peer.network.openStream(peer, protocolId), deadline): return neterr StreamOpenTimeout try: # Send the request await stream.writeChunk(none ResponseCode, requestBytes) # Read the response return awaitWithTimeout( readResponse(when useNativeSnappy: libp2pInput(stream) else: stream, peer, ResponseMsg), deadline, neterr(ReadResponseTimeout)) finally: await safeClose(stream) proc init*[MsgType](T: type MultipleChunksResponse[MsgType], peer: Peer, conn: Connection): T = T(UntypedResponse(peer: peer, stream: conn)) proc init*[MsgType](T: type SingleChunkResponse[MsgType], peer: Peer, conn: Connection): T = T(UntypedResponse(peer: peer, stream: conn)) template write*[M](r: MultipleChunksResponse[M], val: auto): untyped = sendResponseChunkObj(UntypedResponse(r), val) template send*[M](r: SingleChunkResponse[M], val: auto): untyped = doAssert UntypedResponse(r).writtenChunks == 0 sendResponseChunkObj(UntypedResponse(r), val) proc performProtocolHandshakes*(peer: Peer, incoming: bool) {.async.} = # Loop down serially because it's easier to reason about the connection state # when there are fewer async races, specially during setup for protocol in allProtocols: if protocol.onPeerConnected != nil: await protocol.onPeerConnected(peer, incoming) proc initProtocol(name: string, peerInit: PeerStateInitializer, networkInit: NetworkStateInitializer): ProtocolInfoObj = result.name = name result.messages = @[] result.peerStateInitializer = peerInit result.networkStateInitializer = networkInit proc registerProtocol(protocol: ProtocolInfo) = # TODO: This can be done at compile-time in the future let pos = lowerBound(gProtocols, protocol) gProtocols.insert(protocol, pos) for i in 0 ..< gProtocols.len: gProtocols[i].index = i proc setEventHandlers(p: ProtocolInfo, onPeerConnected: OnPeerConnectedHandler, onPeerDisconnected: OnPeerDisconnectedHandler) = p.onPeerConnected = onPeerConnected p.onPeerDisconnected = onPeerDisconnected proc implementSendProcBody(sendProc: SendProc) = let msg = sendProc.msg UntypedResponse = bindSym "UntypedResponse" proc sendCallGenerator(peer, bytes: NimNode): NimNode = if msg.kind != msgResponse: let msgProto = getRequestProtoName(msg.procDef) case msg.kind of msgRequest: let ResponseRecord = msg.response.recName quote: makeEth2Request(`peer`, `msgProto`, `bytes`, `ResponseRecord`, `timeoutVar`) else: quote: sendNotificationMsg(`peer`, `msgProto`, `bytes`) else: quote: sendResponseChunkBytes(`UntypedResponse`(`peer`), `bytes`) sendProc.useStandardBody(nil, nil, sendCallGenerator) proc handleIncomingStream(network: Eth2Node, conn: Connection, MsgType: type) {.async, gcsafe.} = mixin callUserHandler, RecType type MsgRec = RecType(MsgType) const msgName {.used.} = typetraits.name(MsgType) ## Uncomment this to enable tracing on all incoming requests ## You can include `msgNameLit` in the condition to select ## more specific requests: # when chronicles.runtimeFilteringEnabled: # setLogLevel(LogLevel.TRACE) # defer: setLogLevel(LogLevel.DEBUG) # trace "incoming " & `msgNameLit` & " conn" try: let peer = peerFromStream(network, conn) # TODO peer connection setup is broken, update info in some better place # whenever race is fix: # https://github.com/status-im/nim-beacon-chain/issues/1157 peer.info = conn.peerInfo template returnInvalidRequest(msg: ErrorMsg) = await sendErrorResponse(peer, conn, InvalidRequest, msg) return template returnInvalidRequest(msg: string) = returnInvalidRequest(ErrorMsg msg.toBytes) let s = when useNativeSnappy: let fs = libp2pInput(conn) if fs.timeoutToNextByte(TTFB_TIMEOUT): returnInvalidRequest(errorMsgLit "Request first byte not sent in time") fs else: # TODO The TTFB timeout is not implemented in LibP2P streams back-end conn let deadline = sleepAsync RESP_TIMEOUT let msg = if sizeof(MsgRec) > 0: try: awaitWithTimeout(readChunkPayload(s, peer, MsgRec), deadline): returnInvalidRequest(errorMsgLit "Request full data not sent in time") except SerializationError as err: returnInvalidRequest err.formatMsg("msg") except SnappyError as err: returnInvalidRequest err.msg else: NetRes[MsgRec].ok default(MsgRec) if msg.isErr: let (responseCode, errMsg) = case msg.error.kind of UnexpectedEOF, PotentiallyExpectedEOF: (InvalidRequest, errorMsgLit "Incomplete request") of InvalidSnappyBytes: (InvalidRequest, errorMsgLit "Failed to decompress snappy payload") of InvalidSszBytes: (InvalidRequest, errorMsgLit "Failed to decode SSZ payload") of ZeroSizePrefix: (InvalidRequest, errorMsgLit "The request chunk cannot have a size of zero") of SizePrefixOverflow: (InvalidRequest, errorMsgLit "The chunk size exceed the maximum allowed") of InvalidResponseCode, ReceivedErrorResponse, StreamOpenTimeout, ReadResponseTimeout: # These shouldn't be possible in a request, because # there are no response codes being read, no stream # openings and no reading of responses: (ServerError, errorMsgLit "Internal server error") of BrokenConnection: return await sendErrorResponse(peer, conn, responseCode, errMsg) return try: logReceivedMsg(peer, MsgType(msg.get)) await callUserHandler(MsgType, peer, conn, msg.get) except CatchableError as err: await sendErrorResponse(peer, conn, ServerError, ErrorMsg err.msg.toBytes) except CatchableError as err: debug "Error processing an incoming request", err = err.msg, msgName finally: await safeClose(conn) proc handleOutgoingPeer(peer: Peer): Future[bool] {.async.} = let network = peer.network proc onPeerClosed(udata: pointer) {.gcsafe.} = debug "Peer (outgoing) lost", peer nbc_peers.set int64(len(network.peerPool)) let res = await network.peerPool.addOutgoingPeer(peer) if res: peer.updateScore(NewPeerScore) debug "Peer (outgoing) has been added to PeerPool", peer peer.getFuture().addCallback(onPeerClosed) result = true nbc_peers.set int64(len(network.peerPool)) proc handleIncomingPeer(peer: Peer): Future[bool] {.async.} = let network = peer.network proc onPeerClosed(udata: pointer) {.gcsafe.} = debug "Peer (incoming) lost", peer nbc_peers.set int64(len(network.peerPool)) let res = await network.peerPool.addIncomingPeer(peer) if res: peer.updateScore(NewPeerScore) debug "Peer (incoming) has been added to PeerPool", peer peer.getFuture().addCallback(onPeerClosed) result = true nbc_peers.set int64(len(network.peerPool)) proc toPeerAddr*(r: enr.TypedRecord): Result[PeerAddr, cstring] {.raises: [Defect].} = if not r.secp256k1.isSome: return err("enr: no secp256k1 key in record") let pubKey = ? keys.PublicKey.fromRaw(r.secp256k1.get) peerId = ? PeerID.init(crypto.PublicKey( scheme: Secp256k1, skkey: secp.SkPublicKey(pubKey))) var addrs = newSeq[MultiAddress]() if r.ip.isSome and r.tcp.isSome: let ip = ipv4(r.ip.get) addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp.get) if r.ip6.isSome: let ip = ipv6(r.ip6.get) if r.tcp6.isSome: addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp6.get) elif r.tcp.isSome: addrs.add MultiAddress.init(ip, tcpProtocol, Port r.tcp.get) else: discard if addrs.len == 0: return err("enr: no addresses in record") ok(PeerAddr(peerId: peerId, addrs: addrs)) proc dialPeer*(node: Eth2Node, peerAddr: PeerAddr) {.async.} = logScope: peer = peerAddr.peerId debug "Connecting to discovered peer" # TODO connect is called here, but there's no guarantee that the connection # we get when using dialPeer later on is the one we just connected let peer = node.getPeer(peerAddr.peerId) await node.switch.connect(peerAddr.peerId, peerAddr.addrs) #let msDial = newMultistream() #let conn = node.switch.connections.getOrDefault(peerInfo.id) #let ls = await msDial.list(conn) #debug "Supported protocols", ls inc nbc_successful_dials successfullyDialledAPeer = true debug "Network handshakes completed" proc connectWorker(network: Eth2Node) {.async.} = debug "Connection worker started" while true: let remotePeerAddr = await network.connQueue.popFirst() peerPoolHasRemotePeer = network.peerPool.hasPeer(remotePeerAddr.peerId) seenTableHasRemotePeer = network.isSeen(remotePeerAddr.peerId) remotePeerAlreadyConnected = remotePeerAddr.peerId in network.connTable if not(peerPoolHasRemotePeer) and not(seenTableHasRemotePeer) and not(remotePeerAlreadyConnected): network.connTable.incl(remotePeerAddr.peerId) try: # We trying to connect to peers which are not in PeerPool, SeenTable and # ConnTable. var fut = network.dialPeer(remotePeerAddr) # We discarding here just because we going to check future state, to avoid # condition where connection happens and timeout reached. discard await withTimeout(fut, network.connectTimeout) # We handling only timeout and errors, because successfull connections # will be stored in PeerPool. if fut.finished(): if fut.failed() and not(fut.cancelled()): debug "Unable to establish connection with peer", peer = remotePeerAddr.peerId, errMsg = fut.readError().msg inc nbc_failed_dials network.addSeen(remotePeerAddr.peerId, SeenTableTimeDeadPeer) continue debug "Connection to remote peer timed out", peer = remotePeerAddr.peerId inc nbc_timeout_dials network.addSeen(remotePeerAddr.peerId, SeenTableTimeTimeout) finally: network.connTable.excl(remotePeerAddr.peerId) else: trace "Peer is already connected, connecting or already seen", peer = remotePeerAddr.peerId, peer_pool_has_peer = $peerPoolHasRemotePeer, seen_table_has_peer = $seenTableHasRemotePeer, connecting_peer = $remotePeerAlreadyConnected, seen_table_size = len(network.seenTable) # Prevent (a purely theoretical) high CPU usage when losing connectivity. await sleepAsync(1.seconds) proc runDiscoveryLoop*(node: Eth2Node) {.async.} = debug "Starting discovery loop" let enrField = ("eth2", SSZ.encode(node.forkId)) while true: let currentPeerCount = node.peerPool.len if currentPeerCount < node.wantedPeers: try: let discoveredPeers = node.discovery.randomNodes(node.wantedPeers - currentPeerCount, enrField) for peer in discoveredPeers: try: let peerRecord = peer.record.toTypedRecord if peerRecord.isOk: let peerAddr = peerRecord.value.toPeerAddr if peerAddr.isOk: if not node.switch.isConnected(peerAddr.get().peerId): await node.connQueue.addLast(peerAddr.get()) else: discard # peerInfo.close() except CatchableError as err: debug "Failed to connect to peer", peer = $peer, err = err.msg except CatchableError as err: debug "Failure in discovery", err = err.msg await sleepAsync seconds(1) proc getPersistentNetMetadata*(conf: BeaconNodeConf): Eth2Metadata = let metadataPath = conf.dataDir / nodeMetadataFilename if not fileExists(metadataPath): result = Eth2Metadata() for i in 0 ..< ATTESTATION_SUBNET_COUNT: # TODO: For now, we indicate that we participate in all subnets result.attnets[i] = true Json.saveFile(metadataPath, result) else: result = Json.loadFile(metadataPath, Eth2Metadata) proc onConnEvent(node: Eth2Node, peerId: PeerID, event: ConnEvent) {.async.} = let peer = node.getPeer(peerId) case event.kind of ConnEventKind.Connected: inc peer.connections debug "Peer upgraded", peer = $peerId, connections = peer.connections if peer.connections == 1: # Libp2p may connect multiple times to the same peer - using different # transports for both incoming and outgoing. For now, we'll count our # "fist" encounter with the peer as the true connection, leaving the # other connections be - libp2p limits the number of concurrent # connections to the same peer, and only one of these connections will be # active. Nonetheless, this quirk will cause a number of odd behaviours: # * For peer limits, we might miscount the incoming vs outgoing quota # * Protocol handshakes are wonky: we'll not necessarily use the newly # connected transport - instead we'll just pick a random one! node.pubsub.subscribePeer(peerId) await performProtocolHandshakes(peer, event.incoming) # While performing the handshake, the peer might have been disconnected - # there's still a slim chance of a race condition here if a reconnect # happens quickly if peer.connections == 1: # TODO when the pool is full, adding it will block - this means peers # will be left in limbo until some other peer makes room for it let added = if event.incoming: await handleIncomingPeer(peer) else: await handleOutgoingPeer(peer) if not added: # We must have hit a limit! await peer.disconnect(FaultOrError) of ConnEventKind.Disconnected: dec peer.connections debug "Peer disconnected", peer = $peerId, connections = peer.connections if peer.connections == 0: node.pubsub.unsubscribePeer(peerId) let fut = peer.disconnectedFut if fut != nil: peer.disconnectedFut = nil fut.complete() proc init*(T: type Eth2Node, conf: BeaconNodeConf, enrForkId: ENRForkID, switch: Switch, pubsub: PubSub, ip: Option[ValidIpAddress], tcpPort, udpPort: Port, privKey: keys.PrivateKey, discovery: bool, rng: ref BrHmacDrbgContext): T = new result result.switch = switch result.pubsub = pubsub result.wantedPeers = conf.maxPeers result.peerPool = newPeerPool[Peer, PeerID](maxPeers = conf.maxPeers) when not defined(local_testnet): result.connectTimeout = 1.minutes result.seenThreshold = 5.minutes else: result.connectTimeout = 10.seconds result.seenThreshold = 10.seconds result.seenTable = initTable[PeerID, SeenItem]() result.connTable = initHashSet[PeerID]() result.connQueue = newAsyncQueue[PeerAddr](ConcurrentConnections) result.metadata = getPersistentNetMetadata(conf) result.forkId = enrForkId result.discovery = Eth2DiscoveryProtocol.new( conf, ip, tcpPort, udpPort, privKey, {"eth2": SSZ.encode(result.forkId), "attnets": SSZ.encode(result.metadata.attnets)}, rng) result.discoveryEnabled = discovery newSeq result.protocolStates, allProtocols.len for proto in allProtocols: if proto.networkStateInitializer != nil: result.protocolStates[proto.index] = proto.networkStateInitializer(result) for msg in proto.messages: if msg.protocolMounter != nil: msg.protocolMounter result let node = result proc peerHook(peerId: PeerID, event: ConnEvent): Future[void] {.gcsafe.} = onConnEvent(node, peerId, event) switch.addConnEventHandler(peerHook, ConnEventKind.Connected) switch.addConnEventHandler(peerHook, ConnEventKind.Disconnected) template publicKey*(node: Eth2Node): keys.PublicKey = node.discovery.privKey.toPublicKey proc startListening*(node: Eth2Node) {.async.} = if node.discoveryEnabled: node.discovery.open() node.libp2pTransportLoops = await node.switch.start() await node.pubsub.start() proc start*(node: Eth2Node) {.async.} = for i in 0 ..< ConcurrentConnections: node.connWorkers.add connectWorker(node) if node.discoveryEnabled: node.discovery.start() traceAsyncErrors node.runDiscoveryLoop() else: debug "Discovery disabled, trying bootstrap nodes", nodes = node.discovery.bootstrapRecords.len for enr in node.discovery.bootstrapRecords: let tr = enr.toTypedRecord() if tr.isOk(): let pa = tr.get().toPeerAddr() if pa.isOk(): await node.connQueue.addLast(pa.get()) proc stop*(node: Eth2Node) {.async.} = # Ignore errors in futures, since we're shutting down (but log them on the # TRACE level, if a timeout is reached). let waitedFutures = @[ node.discovery.closeWait(), node.switch.stop(), ] timeout = 5.seconds completed = await withTimeout(allFutures(waitedFutures), timeout) if not completed: trace "Eth2Node.stop(): timeout reached", timeout, futureErrors = waitedFutures.filterIt(it.error != nil).mapIt(it.error.msg) proc init*(T: type Peer, network: Eth2Node, info: PeerInfo): Peer = new result result.info = info result.network = network result.connectionState = Connected result.maxInactivityAllowed = 15.minutes # TODO: Read this from the config newSeq result.protocolStates, allProtocols.len for i in 0 ..< allProtocols.len: let proto = allProtocols[i] if proto.peerStateInitializer != nil: result.protocolStates[i] = proto.peerStateInitializer(result) proc registerMsg(protocol: ProtocolInfo, name: string, mounter: MounterProc, libp2pCodecName: string) = protocol.messages.add MessageInfo(name: name, protocolMounter: mounter, libp2pCodecName: libp2pCodecName) proc p2pProtocolBackendImpl*(p: P2PProtocol): Backend = var Format = ident "SSZ" Bool = bindSym "bool" Connection = bindSym "Connection" Peer = bindSym "Peer" Eth2Node = bindSym "Eth2Node" registerMsg = bindSym "registerMsg" initProtocol = bindSym "initProtocol" msgVar = ident "msg" networkVar = ident "network" callUserHandler = ident "callUserHandler" MSG = ident "MSG" p.useRequestIds = false p.useSingleRecordInlining = true new result result.PeerType = Peer result.NetworkType = Eth2Node result.registerProtocol = bindSym "registerProtocol" result.setEventHandlers = bindSym "setEventHandlers" result.SerializationFormat = Format result.RequestResultsWrapper = ident "NetRes" result.implementMsg = proc (msg: p2p_protocol_dsl.Message) = if msg.kind == msgResponse: return let protocol = msg.protocol msgName = $msg.ident msgNameLit = newLit msgName MsgRecName = msg.recName MsgStrongRecName = msg.strongRecName codecNameLit = getRequestProtoName(msg.procDef) protocolMounterName = ident(msgName & "Mounter") ## ## Implement the Thunk: ## ## The protocol handlers in nim-libp2p receive only a `Connection` ## parameter and there is no way to access the wider context (such ## as the current `Switch`). In our handlers, we may need to list all ## peers in the current network, so we must keep a reference to the ## network object in the closure environment of the installed handlers. ## ## For this reason, we define a `protocol mounter` proc that will ## initialize the network object by creating handlers bound to the ## specific network. ## var userHandlerCall = newTree(nnkDiscardStmt) if msg.userHandler != nil: var OutputParamType = if msg.kind == msgRequest: msg.outputParamType else: nil if OutputParamType == nil: userHandlerCall = msg.genUserHandlerCall(msgVar, [peerVar]) if msg.kind == msgRequest: userHandlerCall = newCall(ident"sendUserHandlerResultAsChunkImpl", streamVar, userHandlerCall) else: if OutputParamType.kind == nnkVarTy: OutputParamType = OutputParamType[0] let isChunkStream = eqIdent(OutputParamType[0], "MultipleChunksResponse") msg.response.recName = if isChunkStream: newTree(nnkBracketExpr, ident"seq", OutputParamType[1]) else: OutputParamType[1] let responseVar = ident("response") userHandlerCall = newStmtList( newVarStmt(responseVar, newCall(ident"init", OutputParamType, peerVar, streamVar)), msg.genUserHandlerCall(msgVar, [peerVar], outputParam = responseVar)) protocol.outRecvProcs.add quote do: template `callUserHandler`(`MSG`: type `MsgStrongRecName`, `peerVar`: `Peer`, `streamVar`: `Connection`, `msgVar`: `MsgRecName`): untyped = `userHandlerCall` proc `protocolMounterName`(`networkVar`: `Eth2Node`) = proc snappyThunk(`streamVar`: `Connection`, `protocolVar`: string): Future[void] {.gcsafe.} = return handleIncomingStream(`networkVar`, `streamVar`, `MsgStrongRecName`) mount `networkVar`.switch, LPProtocol(codec: `codecNameLit` & "ssz_snappy", handler: snappyThunk) ## ## Implement Senders and Handshake ## if msg.kind == msgHandshake: macros.error "Handshake messages are not supported in LibP2P protocols" else: var sendProc = msg.createSendProc() implementSendProcBody sendProc protocol.outProcRegistrations.add( newCall(registerMsg, protocol.protocolInfoVar, msgNameLit, protocolMounterName, codecNameLit)) result.implementProtocolInit = proc (p: P2PProtocol): NimNode = return newCall(initProtocol, newLit(p.name), p.peerInit, p.netInit) proc setupNat(conf: BeaconNodeConf): tuple[ip: Option[ValidIpAddress], tcpPort: Port, udpPort: Port] {.gcsafe.} = # defaults result.tcpPort = conf.tcpPort result.udpPort = conf.udpPort var nat: NatStrategy case conf.nat.toLowerAscii: of "any": nat = NatAny of "none": nat = NatNone of "upnp": nat = NatUpnp of "pmp": nat = NatPmp else: if conf.nat.startsWith("extip:"): try: # any required port redirection is assumed to be done by hand result.ip = some(ValidIpAddress.init(conf.nat[6..^1])) nat = NatNone except ValueError: error "nor a valid IP address", address = conf.nat[6..^1] quit QuitFailure else: error "not a valid NAT mechanism", value = conf.nat quit QuitFailure if nat != NatNone: let extIp = getExternalIP(nat) if extIP.isSome: result.ip = some(ValidIpAddress.init extIp.get) # TODO redirectPorts in considered a gcsafety violation # because it obtains the address of a non-gcsafe proc? let extPorts = ({.gcsafe.}: redirectPorts(tcpPort = result.tcpPort, udpPort = result.udpPort, description = clientId)) if extPorts.isSome: (result.tcpPort, result.udpPort) = extPorts.get() func asLibp2pKey*(key: keys.PublicKey): PublicKey = PublicKey(scheme: Secp256k1, skkey: secp.SkPublicKey(key)) func asEthKey*(key: PrivateKey): keys.PrivateKey = keys.PrivateKey(key.skkey) proc initAddress*(T: type MultiAddress, str: string): T = let address = MultiAddress.init(str) if IPFS.match(address) and matchPartial(multiaddress.TCP, address): result = address else: raise newException(MultiAddressError, "Invalid bootstrap node multi-address") template tcpEndPoint(address, port): auto = MultiAddress.init(address, tcpProtocol, port) proc getPersistentNetKeys*( rng: var BrHmacDrbgContext, conf: BeaconNodeConf): KeyPair = let privKeyPath = conf.dataDir / networkKeyFilename privKey = if not fileExists(privKeyPath): createDir conf.dataDir.string let key = PrivateKey.random(Secp256k1, rng).tryGet() writeFile(privKeyPath, key.getBytes().tryGet()) key else: let keyBytes = readFile(privKeyPath) PrivateKey.init(keyBytes.toOpenArrayByte(0, keyBytes.high)).tryGet() KeyPair(seckey: privKey, pubkey: privKey.getKey().tryGet()) func gossipId(data: openArray[byte]): string = # https://github.com/ethereum/eth2.0-specs/blob/v0.12.2/specs/phase0/p2p-interface.md#topics-and-messages base64.encode(Base64Url, sha256.digest(data).data) func msgIdProvider(m: messages.Message): string = gossipId(m.data) proc createEth2Node*(rng: ref BrHmacDrbgContext, conf: BeaconNodeConf, enrForkId: ENRForkID): Eth2Node {.gcsafe.} = var (extIp, extTcpPort, extUdpPort) = setupNat(conf) hostAddress = tcpEndPoint(conf.libp2pAddress, conf.tcpPort) announcedAddresses = if extIp.isNone(): @[] else: @[tcpEndPoint(extIp.get(), extTcpPort)] info "Initializing networking", hostAddress, announcedAddresses let keys = getPersistentNetKeys(rng[], conf) # TODO nim-libp2p still doesn't have support for announcing addresses # that are different from the host address (this is relevant when we # are running behind a NAT). var switch = newStandardSwitch(some keys.seckey, hostAddress, transportFlags = {ServerFlags.ReuseAddr}, secureManagers = [ SecureProtocol.Noise, # Only noise in ETH2! ], rng = rng) let pubsub = GossipSub.init( switch = switch, msgIdProvider = msgIdProvider, triggerSelf = true, sign = false, verifySignature = false).PubSub switch.mount(pubsub) result = Eth2Node.init(conf, enrForkId, switch, pubsub, extIp, extTcpPort, extUdpPort, keys.seckey.asEthKey, discovery = conf.discv5Enabled, rng = rng) proc getPersistenBootstrapAddr*(rng: var BrHmacDrbgContext, conf: BeaconNodeConf, ip: ValidIpAddress, port: Port): EnrResult[enr.Record] = let pair = getPersistentNetKeys(rng, conf) return enr.Record.init(1'u64, # sequence number pair.seckey.asEthKey, some(ip), port, port, @[]) proc announcedENR*(node: Eth2Node): enr.Record = doAssert node.discovery != nil, "The Eth2Node must be initialized" node.discovery.localNode.record proc shortForm*(id: KeyPair): string = $PeerID.init(id.pubkey) let BOOTSTRAP_NODE_CHECK_INTERVAL = 30.seconds proc checkIfConnectedToBootstrapNode(p: pointer) {.gcsafe.} = # Keep showing warnings until we connect to at least one bootstrap node # successfully, in order to allow detection of an invalid configuration. let node = cast[Eth2Node](p) if node.discovery.bootstrapRecords.len > 0 and not successfullyDialledAPeer: warn "Failed to connect to any bootstrap node", bootstrapEnrs = node.discovery.bootstrapRecords addTimer(BOOTSTRAP_NODE_CHECK_INTERVAL, checkIfConnectedToBootstrapNode, p) proc startLookingForPeers*(node: Eth2Node) {.async.} = await node.start() addTimer(BOOTSTRAP_NODE_CHECK_INTERVAL, checkIfConnectedToBootstrapNode, node[].addr) func peersCount*(node: Eth2Node): int = len(node.peerPool) proc subscribe*[MsgType](node: Eth2Node, topic: string, msgHandler: proc(msg: MsgType) {.gcsafe.} ) {.async, gcsafe.} = proc execMsgHandler(topic: string, data: seq[byte]) {.async, gcsafe.} = inc nbc_gossip_messages_received trace "Incoming pubsub message received", len = data.len, topic, msgId = gossipId(data) try: let decompressed = snappy.decode(data, GOSSIP_MAX_SIZE) if decompressed.len > 0: msgHandler SSZ.decode(decompressed, MsgType) else: # TODO penalize peer? debug "Failed to decompress gossip payload" except CatchableError as err: debug "Gossip msg handler error", msg = err.msg, len = data.len, topic, msgId = gossipId(data) await node.pubsub.subscribe(topic & "_snappy", execMsgHandler) proc subscribe*(node: Eth2Node, topic: string) {.async, gcsafe.} = proc dummyMsgHandler(topic: string, data: seq[byte]) {.async, gcsafe.} = discard await node.pubsub.subscribe(topic & "_snappy", dummyMsgHandler) proc addValidator*[MsgType](node: Eth2Node, topic: string, msgValidator: proc(msg: MsgType): bool {.gcsafe.} ) = # Validate messages as soon as subscribed proc execValidator( topic: string, message: GossipMsg): Future[bool] {.async, gcsafe.} = trace "Validating incoming gossip message", len = message.data.len, topic, msgId = gossipId(message.data) try: let decompressed = snappy.decode(message.data, GOSSIP_MAX_SIZE) if decompressed.len > 0: return msgValidator SSZ.decode(decompressed, MsgType) else: # TODO penalize peer? debug "Failed to decompress gossip payload" except CatchableError as err: debug "Gossip validation error", msg = err.msg, msgId = gossipId(message.data) return false node.pubsub.addValidator(topic & "_snappy", execValidator) proc unsubscribe*(node: Eth2Node, topic: string): Future[void] = node.pubsub.unsubscribeAll(topic) proc traceMessage(fut: FutureBase, msgId: string) = fut.addCallback do (arg: pointer): if not(fut.failed): trace "Outgoing pubsub message sent", msgId elif fut.error != nil: debug "Gossip message not sent", msgId, err = fut.error.msg else: debug "Unexpected future state for gossip", msgId, state = fut.state proc broadcast*(node: Eth2Node, topic: string, msg: auto) = inc nbc_gossip_messages_sent let data = snappy.encode(SSZ.encode(msg)) var futSnappy = node.pubsub.publish(topic & "_snappy", data) traceMessage(futSnappy, gossipId(data))