Add support for using era file for the initial checkpoint block.
This should also avoid an error when the beacon node is restarted
before the backfill process has made any progress (#6059).
When initializing from a state that's not aligned to an epoch boundary,
an earlier state is loaded that's epoch aligned, and subsequently topped
up with the missing blocks. `dag.headSyncCommittee` is initialized prior
to topping up the missing blocks, though. If the sync committee changes
while applying the blocks (e.g., a sync committee period boundary hits),
the cached information becomes unlinked from `dag.head`, leading to
valid blocks based on that chain being rejected. To fix this, move cache
initialization after the top up with blocks. This has been observed on
Goerli by initializing from 7919502 and attempting to top up 7920111.
The block gets rejected with an invalid state root on nodes that have
restarted after setting 7920111 as head, while it gets accepted by all
other nodes. Error message is `block: state root verification failed`.
The incorrect initialization behaviour was introduced in #4592, before
which the sync committee cache was initialized after applying blocks.
`batchVerify`'s precondition is a non-empty signature list:
```nim
if input.len == 0:
# Spec precondition
return false
```
This means that in eras without any blocks (as has happened on Goerli),
calling it leads to era files being reported as invalid.
Using a dedicated branch for researching the effectiveness of split view
scenario handling simplifies testing and avoids having partial work on
`unstable`. If we want, we can reintroduce it under a `--debug` flag at
a later time. But for now, Goerli is a rare opoprtunity to test this,
maybe just for another week or so.
- https://github.com/status-im/infra-nimbus/pull/179
In split view situation, the canonical chain may only be served by a
tiny amount of peers, and branches may span long durations. Minority
branches may still have a large weight from attestations and should
be discovered. To assist with that, add a branch discovery module that
assists in such a situation by specifically targeting peers with unknown
histories and downloading from them, in addition to sync manager work
which handles popular branches.
There are situations where all states in the `blockchain_dag` are
occupied and cannot be borrowed.
- headState: Many assumptions in the code that it cannot be advanced
- clearanceState: Resets every time a new block gets imported, including
blocks from non-canonical branches
- epochRefState: Used even more frequently than clearanceState
This means that during the catch-up mechanic where the head state is
slowly advanced to wall clock to catch up on validator duties in the
situation where the canonical head is way behind non-canonical heads,
we cannot use any of the three existing states. In that situation,
Nimbus already consumes an increased amount of memory due to all the
`BlockRef`, fork choice states and so on, so experience is degraded.
It seems reasonable to allocate a fourth state temporarily during that
mechanic, until a new proposal could be made on the canonical chain.
Note that currently, on `unstable`, proposals _do_ happen every couple
hours because sync manager doesn't manage to discover additional heads
in a split-view scenario on Goerli. However, with the branch discovery
module, new blocks are discovered all the time, and the clearanceState
may no longer be borrowed as it is reset to different branch too often.
The extra state could also find other uses in the future, e.g., for
incremental computations as in reindexing the database, or online
collection of historical light client data.
* handle case of unreachable block in `is_optimstic` helper
When a non-canonical block is still in the DB, it can be accessed via
`BlockId`, but `BlockRef` may be unavailable if the block was not
properly cleaned when it got orphaned. Report it as optimistic.
* `template` -> `func`
Nimbus currently stops performing validator duties if the blockchain
does not progress for `node.config.syncHorizon` slots. This means that
the chain won't recover because no new blocks are proposed. To fix that,
continue performing validator duties if no progress is registered for a
long time, and none of our peers is indicating any progress.
On Goerli there are some instances of long streaks of empty epochs due
to different branches being built in parallel. They sometimes lead to
`Request for pruned historical state` logs requiring a BN restart to
resolve. Avoid that by trying to restore states from the entire non-
finalized history, to avoid losing sync in such situtions.
* track latest duration instead of total in new timing metrics
Change `db_checkpoint_seconds` and `state_replay_seconds` metrics to
record the latest duration instead of the total. `nim-metrics` already
synthesizes a `_total` metric from these implicitly.
* still have to use inc, metrics only synthesizes the name not the sum
* prefix with `beacon_dag`
Validator monitoring gained 2 new metrics for tracking when blocks are
included or not on the head chain.
Similar to attestations, if the block is produced in epoch N, reporting
will use the state when switching to epoch N+2 to do the reporting (so
as to reasonably stabilise the block inclusion in the face of reorgs).
Database checkpointing can take seconds, e.g., while Geth is syncing.
Add a debug log + metric for it, and also info log if it takes longer
than 250ms, same as for the existing `State replayed` log. If the log
shows up for a user while the system is not overloaded, it may point
to slow disk speed or thermal issue.
* compute post-merge randao mix without loading state
* avoid copying state on shuffling computation and compute epochref
* speed up state copy for block production
With checkpoint sync, the checkpoint block is typically unavailable at
the start, and only backfilled later. To avoid treating it as having
zero hash, execution disabled in some contexts, wrap the result of
`loadExecutionBlockHash` in `Opt` and handle block hash being unknown.
---------
Co-authored-by: Jacek Sieka <jacek@status.im>
When syncing, we log a notice each time someone asks us for a block that
we haven't backfilled yet. This is quite verbose and not unexpected,
because the status message does not allow indicating backfill progress.
When using checkpoint sync, only checkpoint state is available, block is
not downloaded and backfilled later.
`dag.backfill` tracks latest filled `slot`, and latest `parent_root` for
which no block has been synced yet.
In checkpoint sync, this assumption is broken, because there, the start
`dag.backfill.slot` is set based on checkpoint state slot, and the block
is also not available.
However, sync manager in backward mode also requests `dag.backfill.slot`
and `block_clearance` then backfills the checkpoint block once it is
synced. But, there is no guarantee that a peer ever sends us that block.
They could send us all parent blocks and solely omit the checkpoint
block itself. In that situation, we would accept the parent blocks and
advance `dag.backfill`, and subsequently never request the checkpoint
block again, resulting in gap inside blocks DB that is never filled.
To mitigate that, the assumption is restored that `dag.backfill.slot`
is the latest filled `slot`, and `dag.backfill.parent_root` is the next
block that needs to be synced. By setting `slot` to `tail.slot + 1` and
`parent_root` to `tail.root`, we put a fake summary into `dag.backfill`
so that `block_clearance` only proceeds once checkpoint block exists.
After checkpoint sync, historical block IDs cannot yet be queried.
However, they are needed to compute dependent roots of `ShufflingRef`.
To allow lookup, enable `getBlockIdAtSlot` to answer from compatible
states in memory; as long as they descend from the finalized checkpoint
and the requested slot is sufficiently recent, `block_roots` contains
everything to recover `BlockSlotId` up to `SLOTS_PER_HISTORICAL_ROOT`.
This is similar to how `attester_dependent_root` etc. are computed.
This accelerates the first couple minutes of checkpoint sync on Mainnet,
especially the time until finality advances past the synced checkpoint.
When the BN exits after writing new `head` to database, but before
completing the `updateFinalizedBlocks` call, the database is slightly
inconsistent due to the partial write. We currently fail to start up
after that. Fix that by catching up on partial `updateFinalizedBlocks`
tasks on start up, and add a test for this edge case.
Simplify best `LightClientUpdate` collection by tracking only canonical
data instead of tracking the best update across all branches within the
sync committee period.
- https://github.com/ethereum/consensus-specs/pull/3553
* ShufflingRef approach to next-epoch validator duty calculation/prediction
* refactor action_tracker.updateActions to take ShufflingRef + beacon_proposers; refactor maybeUpdateActionTrackerNextEpoch to be separate and reused function; add actual fallback logic
* document one possible set of conditions
* check epoch participation flags and inactivity scores to ensure no penalties and MAX_EFFECTIVE_BALANCE to ensure rewards don't matter
* correctly (un)shuffle each proposer index
* remove debugging assertion