On Goerli there are some instances of long streaks of empty epochs due
to different branches being built in parallel. They sometimes lead to
`Request for pruned historical state` logs requiring a BN restart to
resolve. Avoid that by trying to restore states from the entire non-
finalized history, to avoid losing sync in such situtions.
In `block_dag` there is a max depth of 100 years configured to detect
internal inconsistencies, e.g., circular references. As `BlockRef` was
changed long ago to only reflect the non-finalized chain segment, the
theoretically supported max depth can be reduced and simplified.
The `syncHorizon` describes the number of empty slots before the beacon
node considers itself to be out of sync. There are two places where we
currently set this to 50 slots, but it makes more sense to base it on
wall time, e.g., the 10 minutes that the default 50 are derived from.
In #5120, EIP-7044 support got added to the state transition function to
force `CAPELLA_FORK_VERSION` to be used when validiting `VoluntaryExit`
messages, irrespective of their `epoch`.
In #5637, similar logic was added when batch verifying BLS signatures,
which is used during gossip validation (libp2p gossipsub, and req/resp).
However, that logic did not match the one introduced in #5120, and only
uses `CAPELLA_FORK_VERSION` when a `VoluntaryExit`'s `epoch` was set to
a value `>= CAPELLA_FORK_EPOCH`. Otherwise, `BELLATRIX_FORK_VERSION`
would still be used when validating `VoluntaryExit`, e.g., with `epoch`
set to `0`, as is the case in this Holesky block:
- https://holesky.beaconcha.in/slot/1076985#voluntary-exits
Extracting the correct logic from #5120 into a function, and reusing it
when verifying BLS signatures fixes this issue, and also leverages the
exhaustive EF test suite that covers the (correct) #5120 logic.
This fix only affects networks that have EIP-7044 applied (post-Deneb).
Without the fix, Deneb blocks with a `VoluntaryExit` with `epoch` set to
`< CAPELLA_FORK_EPOCH` incorrectly fail to validate despite being valid.
Incorrect blocks that contain a malicious `VoluntaryExit` with `epoch`
set to `< CAPELLA_FORK_EPOCH` and signed using `BELLATRIX_FORK_VERSION`
_would_ pass the BLS verification stage, but subsequently fail the state
transition logic. Such blocks would still correctly be labeled invalid.
* track latest duration instead of total in new timing metrics
Change `db_checkpoint_seconds` and `state_replay_seconds` metrics to
record the latest duration instead of the total. `nim-metrics` already
synthesizes a `_total` metric from these implicitly.
* still have to use inc, metrics only synthesizes the name not the sum
* prefix with `beacon_dag`
Validator monitoring gained 2 new metrics for tracking when blocks are
included or not on the head chain.
Similar to attestations, if the block is produced in epoch N, reporting
will use the state when switching to epoch N+2 to do the reporting (so
as to reasonably stabilise the block inclusion in the face of reorgs).
Database checkpointing can take seconds, e.g., while Geth is syncing.
Add a debug log + metric for it, and also info log if it takes longer
than 250ms, same as for the existing `State replayed` log. If the log
shows up for a user while the system is not overloaded, it may point
to slow disk speed or thermal issue.
* compute post-merge randao mix without loading state
* avoid copying state on shuffling computation and compute epochref
* speed up state copy for block production
With checkpoint sync, the checkpoint block is typically unavailable at
the start, and only backfilled later. To avoid treating it as having
zero hash, execution disabled in some contexts, wrap the result of
`loadExecutionBlockHash` in `Opt` and handle block hash being unknown.
---------
Co-authored-by: Jacek Sieka <jacek@status.im>
When syncing, we log a notice each time someone asks us for a block that
we haven't backfilled yet. This is quite verbose and not unexpected,
because the status message does not allow indicating backfill progress.
When using checkpoint sync, only checkpoint state is available, block is
not downloaded and backfilled later.
`dag.backfill` tracks latest filled `slot`, and latest `parent_root` for
which no block has been synced yet.
In checkpoint sync, this assumption is broken, because there, the start
`dag.backfill.slot` is set based on checkpoint state slot, and the block
is also not available.
However, sync manager in backward mode also requests `dag.backfill.slot`
and `block_clearance` then backfills the checkpoint block once it is
synced. But, there is no guarantee that a peer ever sends us that block.
They could send us all parent blocks and solely omit the checkpoint
block itself. In that situation, we would accept the parent blocks and
advance `dag.backfill`, and subsequently never request the checkpoint
block again, resulting in gap inside blocks DB that is never filled.
To mitigate that, the assumption is restored that `dag.backfill.slot`
is the latest filled `slot`, and `dag.backfill.parent_root` is the next
block that needs to be synced. By setting `slot` to `tail.slot + 1` and
`parent_root` to `tail.root`, we put a fake summary into `dag.backfill`
so that `block_clearance` only proceeds once checkpoint block exists.
After checkpoint sync, historical block IDs cannot yet be queried.
However, they are needed to compute dependent roots of `ShufflingRef`.
To allow lookup, enable `getBlockIdAtSlot` to answer from compatible
states in memory; as long as they descend from the finalized checkpoint
and the requested slot is sufficiently recent, `block_roots` contains
everything to recover `BlockSlotId` up to `SLOTS_PER_HISTORICAL_ROOT`.
This is similar to how `attester_dependent_root` etc. are computed.
This accelerates the first couple minutes of checkpoint sync on Mainnet,
especially the time until finality advances past the synced checkpoint.
Finish the rename started in #4809 to have a consistent naming.
`ExecutionPayloadHash` suggests hash over payload instead of block.
`BlockHash` is also the canonical name in engine API.
When using checkpoint sync, the initial block is missing in the DB.
Update the LC data collector initialization to account for that,
avoiding a spurious error message when it is incorrectly accessed:
```
ERR 2024-02-07 11:21:55.416+01:00 Block failed to load unexpectedly topics="chaindag_lc" bid=d30517a7:8257504 tail=8257504
```
Also fixes a regression from #5691 that resulted in similar messages
while importing the first few blocks after checkpoint sync.
Thanks to @arnetheduck for reporting this.
Full caches should not be used to mark blocks as unviable. The unviable
status is quite persistent and a block marked as such won't be processed
again once the cache empties. Problem originally introduced in #4808.
If the initial state replays cover the finalized head, import matching
`LightClientBootstrap` into database.
This also addresses this error when light client requests bootstrap from
the genesis slot on networks that launch with Altair enabled.
```
{"lvl":"DBG","ts":"2023-10-04 11:17:49.665+00:00","msg":"LC bootstrap unavailable: Sync committee branch not cached","topics":"chaindag_lc","slot":0}
```
With Capella, `bls_to_execution_change` SSE should be emitted on the
event stream whenever a new `SignedBLSToExecutionChange` is received.
Add this missing functionality for compatibility with beacon-API specs.
- https://github.com/ethereum/beacon-APIs/pull/248
* use `PayloadAttributesV3` in `nimbus_light_client` for Deneb
From Deneb onward, `forkchoiceUpdated` requires `PayloadAttributesV3`.
In `nimbus_light_client` we still used `PayloadAttributesV2`.
Also clean up two other locations that were already correctly using
`PayloadAttributesV3`, to reduce code duplication.
* fix letter case
When the BN exits after writing new `head` to database, but before
completing the `updateFinalizedBlocks` call, the database is slightly
inconsistent due to the partial write. We currently fail to start up
after that. Fix that by catching up on partial `updateFinalizedBlocks`
tasks on start up, and add a test for this edge case.
Simplify best `LightClientUpdate` collection by tracking only canonical
data instead of tracking the best update across all branches within the
sync committee period.
- https://github.com/ethereum/consensus-specs/pull/3553
* reorder gossip validation checks
Doing the coverage check only after the corresponding committee index is
known allows optimization by early rejecting invalid data.
* use same helper for individual attestations as well
When creating new LC updates, information about the parent block's post
state must be available (cached), but information about current block's
post state is not yet required. Caching information about the current
block's post state can be delayed, simplifying the LC data collection
logic a bit and allowing more future flexibility with the cache design.
When new finality is reached without supermajority sync committee
support, trigger another event push on beacon-API and libp2p once
the finality gains supermajority support.
- https://github.com/ethereum/consensus-specs/pull/3549
Replace sections that need to be maintained with every `ConsensusFork`
related to LC data collection with a generic logic that keeps working
when unrelated parts of Ethereum change.
`v1.4.0-beta.4` made the Gossip rules more strict and now requires to
ignore blobs from other branches if there are equivocating blocks.
Those blobs are only requestable via Req/Resp.
* ShufflingRef approach to next-epoch validator duty calculation/prediction
* refactor action_tracker.updateActions to take ShufflingRef + beacon_proposers; refactor maybeUpdateActionTrackerNextEpoch to be separate and reused function; add actual fallback logic
* document one possible set of conditions
* check epoch participation flags and inactivity scores to ensure no penalties and MAX_EFFECTIVE_BALANCE to ensure rewards don't matter
* correctly (un)shuffle each proposer index
* remove debugging assertion
Directly initialize `ForkedLightClientObj` instead of separately first
setting the `kind` (initializing everything to zero) and then assigning
the forky data after that.
For symmetry with `forkyState` when using `withState`, and to avoid
problems with shadowing of `blck` when using `withBlck` in `template`,
also rename the injected `blck` to `forkyBlck`.
- https://github.com/nim-lang/Nim/issues/22698
To allow testing https://github.com/ethereum/consensus-specs/issues/3466
add support for selecting fork choice version at launch. This means we
can deploy a different logic when `DENEB_FORK_EPOCH != FAR_FUTURE_EPOCH`
that won't be used on Mainnet.
This PR renames the existing `validator_duties` to `beacon_validators`
and in doing so, names validators running inside the beacon node process
"beacon validators" while those running the VC can be referred to as
"client validators" to disambiguate the two.
The existing `validator_duties` instead takes on a new responsibility:
as a home for logic shared between beacon and client validators - ie
code that provides consistency in implementation and behavior between
the two modes of operation.
Not only does this simplify reasoning about where to put code -it also
reduces the number of dependencies the validator client has from ~5000
to ~3000 modules (!) according to `nim genDepend` significantly reducing
compile times.
When a block is introduced to the system both via REST and gossip at the
same time, we will call `storeBlock` from two locations leading to a
dupliace check race condition as we wait for the EL.
This issue may manifest in particular when using an external block
builder that itself publishes the block onto the gossip network.
* refactor enqueue flow
* simplify calling `addBlock`
* complete request manager verifier future for blobless blocks
* re-verify parent conditions before adding block
among other things, it might have gone stale or finalized between one
call and the other
Split up the `ShufflingRef` acceleration logic into generically usable
parts and attester shuffling specific parts. The generic parts could be
used to accelerate other purposes, e.g., REST `/states/xxx/randao` API.