This PR removes a bunch of code to make TNS aware of era files, avoiding
a duplicated backfill when era files are available.
* reuse chaindag for loading backfill state, replacing the TNS homebrew
* fix era block iteration to skip empty slots
* add tests for `can_advance_slots`
* move duty tracking code to `ActionTracker`
* fix earlier duties overwriting later ones
* re-run subnet selection when new duty appears
* log upcoming duties as soon as they're known (vs 4 epochs before)
Currently, we require genesis and a checkpoint block and state to start
from an arbitrary slot - this PR relaxes this requirement so that we can
start with a state alone.
The current trusted-node-sync algorithm works by first downloading
blocks until we find an epoch aligned non-empty slot, then downloads the
state via slot.
However, current
[proposals](https://github.com/ethereum/beacon-APIs/pull/226) for
checkpointing prefer finalized state as
the main reference - this allows more simple access control and caching
on the server side - in particular, this should help checkpoint-syncing
from sources that have a fast `finalized` state download (like infura
and teku) but are slow when accessing state via slot.
Earlier versions of Nimbus will not be able to read databases created
without a checkpoint block and genesis. In most cases, backfilling makes
the database compatible except where genesis is also missing (custom
networks).
* backfill checkpoint block from libp2p instead of checkpoint source,
when doing trusted node sync
* allow starting the client without genesis / checkpoint block
* perform epoch start slot lookahead when loading tail state, so as to
deal with the case where the epoch start slot does not have a block
* replace `--blockId` with `--state-id` in TNS command line
* when replaying, also look at the parent of the last-known-block (even
if we don't have the parent block data, we can still replay from a
"parent" state) - in particular, this clears the way for implementing
state pruning
* deprecate `--finalized-checkpoint-block` option (no longer needed)
* Allow chain dag without genesis / block
This PR enables the initialization of the dag without access to blocks
or genesis state - it is a prerequisite for implementing a number of
interesting features:
* checkpoint sync without any block download
* pruning of blocks and states
* backfill checkpoint block
When EL `newPayload` is slow (e.g., Raspberry Pi with Besu), the epoch
and shuffling caches tend to fill up with multiple copies per epoch when
processing gossip and performing validator duties close to wall slot.
The old strategy of evicting oldest epoch led to the same item being
evicted over and over, leading to blocking of over 5 minutes in extreme
cases where alternate epochs/shuffling got loaded repeatedly.
Changing the cache eviction strategy to least-recently-used seems to
improve the situation drastically. A simple implementation was selected
based on single linked-list without a hashtable.
When backfilling LC updates (`--light-client-data-import-mode=full`),
the highest participation update is computed without ensuring that the
finalized header is in the same period. Updates sharing same period for
both finalized and attested headers should be preferred.
Fixes a bug leading to suboptimal update selection.
* avoid database race-condition inconsistency after fcU `INVALID` then crash
* ensure head doesn't fall behind finalized; add more tests for head movement/reloading DAG
When the BN's head is reorged while shut down, reloading the BN will not
assign `BlockRef` to alternate branches. However, blocks from other
branches are still present in the database, leading to their descendants
incorrectly marked as `UnviableFork`. By restricting the check to blocks
that have been finalized, they should be reported as `MissingParent`
instead, eventually re-assigning a `BlockRef` to them.
Since these files may have been created in a previous run or manually,
we want to keep loading them even on nodes that don't enable the
keystore API (for example static setups)
Other changes:
* log keystore loading progressively (#3699)
* print initial fee recipient when loading validators
* log dynamic fee recipient updates
* more efficient forkchoiceUpdated usage
* await rather than asyncSpawn; ensure head update before dag.updateHead
* use action tracker rather than attached validators to check for next slot proposal; use wall slot + 1 rather than state slot + 1 to correctly check when missing blocks
* re-add two-fcU case for when newPayload not VALID
* check dynamicFeeRecipientsStore for potential proposal
* remove duplicate checks for whether next proposer
When the BN-embedded LC makes sync progress, pass the corresponding
execution block hash to the EL via `engine_forkchoiceUpdatedV1`.
This allows the EL to sync to wall slot while the chain DAG is behind.
Renamed `--light-client` to `--sync-light-client` for clarity, and
`--light-client-trusted-block-root` to `--trusted-block-root` for
consistency with `nimbus_light_client`.
Note that this does not work well in practice at this time:
- Geth sticks to the optimistic sync:
"Ignoring payload while snap syncing" (when passing the LC head)
"Forkchoice requested unknown head" (when updating to LC head)
- Nethermind syncs to LC head but does not report ancestors as VALID,
so the main forward sync is still stuck in optimistic mode:
"Pre-pivot block, ignored and returned Syncing"
To aid EL client teams in fixing those issues, having this available
as a hidden option is still useful.
The optimistic sync spec was updated since the LC based optsync module
was introduced. It is no longer necessary to wait for the justified
checkpoint to have execution enabled; instead, any block is okay to be
optimistically imported to the EL client, as long as its parent block
has execution enabled. Complex syncing logic has been removed, and the
LC optsync module will now follow gossip directly, reducing the latency
when using this module. Note that because this is now based on gossip
instead of using sync manager / request manager, that individual blocks
may be missed. However, EL clients should recover from this by fetching
missing blocks themselves.
* Harden block proposal against expired slashings/exits
When a message is signed in a phase0 domain, it can no longer be
validated under bellatrix due to the correct fork no longer being
available in the `BeaconState`.
To ensure that all slashing/exits are still valid, in this PR we re-run
the checks in the state that we're proposing for, thus hardening against
both signatures and other changes in the state that might have
invalidated the message.
* fix same message added multiple times
in case of attestation slashing of multiple validators in one go
Aligns the default retention policy for LC data with the one for blocks.
Minimum spec requirement for both blocks and LC data is ~5 months.
Additional use cases are better supported by retaining data for longer.
In order to avoid full replays when validating attestations hailing from
untaken forks, it's better to keep shufflings separate from `EpochRef`
and perform a lookahead on the shuffling when processing the block that
determines them.
This also helps performance in the case where REST clients are trying to
perform lookahead on attestation duties and decreases memory usage by
sharing shufflings between EpochRef instances of the same dependent
root.
When there is heavy forking, proposals may get missed due to including
attestations from different forks that later fail verification.
Checking attestation signatures when building blocks should fix this.
Adds the `--web3-url` launch argument to `nimbus_light_client` to enable
driving the EL with the optimistic head obtained from LC sync protocol.
This will keep issuing `newPayload` / `forkChoiceUpdated` requests for
new blocks, marking them as optimistic. `ZERO_HASH` is reported as the
finalized block for now.
Whether new blocks/attestations/etc are produced internally or received
via REST, their journey through the node is the same - to ensure that
they get the same treatment (logging, metrics, processing), this PR
moves the routing to a dedicated module and fixes several small
differences that existed before.
* `xxxValidator` -> `processMessageName` - the processor also was adding
messages to pools, so we want the name to reflect that action
* add missing "sent" metrics for some messages
* document ignore policy better - already-seen messages are not actaully
rebroadcast by libp2p
* skip redundant signature checks for internal validators consistently
The justified and finalized `Checkpoint` are frequently passed around
together. This introduces a new `FinalityCheckpoint` data structure that
combines them into one.
Due to the large usage of this structure in fork choice, also took this
opportunity to update fork choice tests to the latest v1.2.0-rc.1 spec.
Many additional tests enabled, some need more work, e.g. EL mock blocks.
Also implemented `discard_equivocations` which was skipped in #3661,
and improved code reuse across fork choice logic while at it.
* merge LC db into main BN db
To treat derived LC data similar to derived state caches, merge it into
the main beacon node DB.
* shorten table names, group with lc prefix
* optimistic sync
* flag that initially loaded blocks from database might need execution block root filled in
* return optimistic status in REST calls
* refactor blockslot pruning
* ensure beacon_blocks_by_{root,range} do not provide optimistic blocks
* handle forkchoice head being pre-merge with block being postmerge
* re-enable blocking head updates on validator duties
* fix is_optimistic_candidate_block per spec; don't crash with nil future
* fix is_optimistic_candidate_block per spec; don't crash with nil future
* mark blocks sans execution payloads valid during head update
* persist LC data across restarts
With the Altair spec `LightClientUpdate` structure taking its final form
it is finally possible to persist LC data across restarts without having
to worry about data migration due to spec changes. A separate `lcdataV1`
database is created in the `caches` subdirectory to hold known LC data.
A full database with default settings (129 periods) uses <15 MB disk.
* extend LC data DB rationale
* wording
* add `isSupportedBySQLite` helper and explicit return
* remove redundant `return`
Separate LC initialization options from the main ChainDAGRef options to
allow ChainDAGRef to treat them as opaque and reduce risk for conflicts
when extending those options in the future.
Merkle proofs tend to have long underlying type definitions, e.g.,
`array[log2trunc(NEXT_SYNC_COMMITTEE_INDEX), Eth2Digest]`. For the
ones used in the LC sync protocol, dedicated types are introduced
to improve readability. Furthermore, the `CachedLightClientBootstrap`
wrapper that solely wrapped a merkle branch is eliminated.
Adds a `--light-client-data-max-periods` option to override the number
of sync committee periods to retain light client data.
Raising it above the default enables archive nodes to serve full data.
Lowering below the default speeds up import times (still no persistence)
This updates `nim-ssz-serialization` to
`3db6cc0f282708aca6c290914488edd832971d61`.
Notable changes:
- Use `uint64` for `GeneralizedIndex`
- Add support for building merkle multiproofs
Combines the LC data configuration options (serve / importMode), the
callbacks (finality / optimistic LC update) as well as the cache storing
light client data, into a new `LightClientDataStore` structure.
Also moves the structure into a light client specific file.
* Initial commit
* Make `events` API spec compliant.
* Add `Eth-Consensus-Version` in responses.
* Bump chronos to get redirect with headers working.
* Add `is_optimistic` field and handling to syncing RestSyncInfo.
If database access errors are encountered while proccessing LC data,
track the section which was accessed without errors so that the rest
may be attempted to be re-indexed later.
The initial sync committee period follows a different finality rule than
the other ones. Instead of next sync committee finalizing as soon as the
`finalizedHead.slot >= period.start_slot` have to use Altair start slot.
For consistency with other options, use a common prefix for light client
data configuration options.
* `--serve-light-client-data` --> `--light-client-data-serve`
* `--import-light-client-data` --> `--light-client-data-import-mode`
No deprecation of the old identifiers as they were only sparingly used
and all usage can be easily updated without interferance.
When launched with `--light-client-enable` the latest blocks are fetched
and optimistic candidate blocks are passed to a callback (log for now).
This helps accelerate syncing in the future (optimistic sync).
Adds a `LightClient` instance to the beacon node as preparation to
accelerate syncing in the future (optimistic sync).
- `--light-client-enable` turns on the feature
- `--light-client-trusted-block-root` configures block to start from
If no block root is configured, light client tracks DAG `finalizedHead`.