* reworked some of the das core specs, pr'd to check whether whether the conflicting type issue is centric to my machine or not
* bumped nim-blscurve to 9c6e80c6109133c0af3025654f5a8820282cff05, same as unstable
* bumped nim-eth2-scenarios, nim-nat-traversal at par with unstable, added more pathches, made peerdas devnet branch backward compatible, peerdas passing new ssz tests as per alpha3, disabled electra fixture tests, as branch hasn't been rebased for a while
* refactor test fixture files
* rm: serializeDataColumn
* refactor: took data columns extracted from blobs during block proposal to the heap
* disable blob broadcast in pd devnet
* fix addBlock in message router
* fix: data column iterator
* added debug checkpoints to check CI
* refactor if else conditions
* add: updated das core specs to alpha 3, and unit tests pass
When restarting beacon node, orphaned blocks remain in the database but
on startup, only the canonical chain as selected by fork choice loads.
When a new block is discovered that builds on top of an orphaned block,
the orphaned block is re-downloaded using sync/request manager, despite
it already being present on disk. Such queries can be answered locally
to improve discovery speed of alternate forks.
Full caches should not be used to mark blocks as unviable. The unviable
status is quite persistent and a block marked as such won't be processed
again once the cache empties. Problem originally introduced in #4808.
Fix regression from #4808 where blobs that are already known are issued
ACCEPT verdict, propagating them to peers over and over again.
`validateBlobSidecar` contains the correct IGNORE logic. Moved it above
the expensive checks to retain the performance of the check.
When a block is introduced to the system both via REST and gossip at the
same time, we will call `storeBlock` from two locations leading to a
dupliace check race condition as we wait for the EL.
This issue may manifest in particular when using an external block
builder that itself publishes the block onto the gossip network.
* refactor enqueue flow
* simplify calling `addBlock`
* complete request manager verifier future for blobless blocks
* re-verify parent conditions before adding block
among other things, it might have gone stale or finalized between one
call and the other
* async batch verification
When batch verification is done, the main thread is blocked reducing
concurrency.
With this PR, the new thread signalling primitive in chronos is used to
offload the full batch verification process to a separate thread
allowing the main threads to continue async operations while the other
threads verify signatures.
Similar to previous behavior, the number of ongoing batch verifications
is capped to prevent runaway resource usage.
In addition to the asynchronous processing, 3 addition changes help
drive throughput:
* A loop is used for batch accumulation: this prevents a stampede of
small batches in eager mode where both the eager and the scheduled batch
runner would pick batches off the queue, prematurely picking "fresh"
batches off the queue
* An additional small wait is introduced for small batches - this helps
create slightly larger batches which make better used of the increased
concurrency
* Up to 2 batches are scheduled to the threadpool during high pressure,
reducing startup latency for the threads
Together, these changes increase attestation verification throughput
under load up to 30%.
* fixup
* Update submodules
* fix blst build issues (and a PIC warning)
* bump
---------
Co-authored-by: Zahary Karadjov <zahary@gmail.com>
When doing sync for blocks older than
MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS, we skip the blobs by range
request, but we then pass en empty blob sequence to
validation, which then fails.
To fix this: Use an Option[Blobsidecars] to allow expressing the
distinction between "empty blob sequence" and "blobs unavailable". Use
the latter for "old" blocks, and don't attempt to run blob validation.
`SyncCommitteeMsgPool` grouped messages by their `beacon_block_root`.
This is problematic around sync committee period boundaries and forks.
Around sync committee period boundaries, members from both the current
and next sync committee may sign the same `beacon_block_root`; mixing
the signatures from both committees together is a mistake. Likewise,
around fork transitions, the `signing_root` changes, so those messages
also need to be segregated.