When launched with `--light-client-enable` the latest blocks are fetched
and optimistic candidate blocks are passed to a callback (log for now).
This helps accelerate syncing in the future (optimistic sync).
Incorporates the latest changes to the light client sync protocol based
on Devconnect AMS feedback. Note that this breaks compatibility with the
previous prototype, due to changes to data structures and endpoints.
See https://github.com/ethereum/consensus-specs/pull/2802
Other fixes:
* Fix bit rot in the `make prater-dev-deposit` target.
* Correct content-type in the responses of the Nimbus signing node
* Invalid JSON payload was being sent in the web3signer requests
When doing checkpoint sync, collecting light client data of known blocks
and states incorrectly assumes that `finalized_checkpoint` information
is also known. Hardens collection to only collect finalized checkpoint
data after `dag.computeEarliestLightClientSlot`.
Adds `LightClientProcessor` as the pendant to `BlockProcessor` while
operating in light client mode. Note that a similar mechanism based on
async futures is used for interoperability with existing infrastructure,
despite light client object validation being done synchronously.
Up til now, the block dag has been using `BlockRef`, a structure adapted
for a full DAG, to represent all of chain history. This is a correct and
simple design, but does not exploit the linearity of the chain once
parts of it finalize.
By pruning the in-memory `BlockRef` structure at finalization, we save,
at the time of writing, a cool ~250mb (or 25%:ish) chunk of memory
landing us at a steady state of ~750mb normal memory usage for a
validating node.
Above all though, we prevent memory usage from growing proportionally
with the length of the chain, something that would not be sustainable
over time - instead, the steady state memory usage is roughly
determined by the validator set size which grows much more slowly. With
these changes, the core should remain sustainable memory-wise post-merge
all the way to withdrawals (when the validator set is expected to grow).
In-memory indices are still used for the "hot" unfinalized portion of
the chain - this ensure that consensus performance remains unchanged.
What changes is that for historical access, we use a db-based linear
slot index which is cache-and-disk-friendly, keeping the cost for
accessing historical data at a similar level as before, achieving the
savings at no percievable cost to functionality or performance.
A nice collateral benefit is the almost-instant startup since we no
longer load any large indicies at dag init.
The cost of this functionality instead can be found in the complexity of
having to deal with two ways of traversing the chain - by `BlockRef` and
by slot.
* use `BlockId` instead of `BlockRef` where finalized / historical data
may be required
* simplify clearance pre-advancement
* remove dag.finalizedBlocks (~50:ish mb)
* remove `getBlockAtSlot` - use `getBlockIdAtSlot` instead
* `parent` and `atSlot` for `BlockId` now require a `ChainDAGRef`
instance, unlike `BlockRef` traversal
* prune `BlockRef` parents on finality (~200:ish mb)
* speed up ChainDAG init by not loading finalized history index
* mess up light client server error handling - this need revisiting :)
One more step on the journey to reduce `BlockRef` usage across the
codebase - this one gets rid of `StateData` whose job was to keep track
of which block was last assigned to a state - these duties have now been
taken over by `latest_block_root`, a fairly recent addition that
computes this block root from state data (at a small cost that should be
insignificant)
99% mechanical change.
When a `beaconBlocksByRange` response advances the `safeSlot`, but later
has errors, the sync queue keeps repeating that same request until it is
fulfilled without errors. Data up through `safeSlot` is considered to be
immutable, i.e., finalized, so re-requesting that data is not useful.
By advancing the sync progress in that scenario, those redundant query
portions can be avoided. Note, the finalized block _itself_ is always
requested, even in the initial request. This behaviour is kept same.
* fewer deps on `BlockRef` traversal in anticipation of pruning
* allows identifying EpochRef:s by their shuffling as a first step of
* tighten error handling around missing blocks
using the zero hash for signalling "missing block" is fragile and easy
to miss - with checkpoint sync now, and pruning in the future, missing
blocks become "normal".
Light clients require full nodes to serve additional data so that they
can stay in sync with the network. This patch adds a new launch option
`--import-light-client-data` to configure what data to make available.
For now, data is only kept in memory; it is not persisted at this time.
Note that data is only locally collected, a separate patch is needed to
actually make it availble over the network. `--serve-light-client-data`
will be used for serving data, but is not functional yet outside tests.
* Store finalized block roots in database (3s startup)
When the chain has finalized a checkpoint, the history from that point
onwards becomes linear - this is exploited in `.era` files to allow
constant-time by-slot lookups.
In the database, we can do the same by storing finalized block roots in
a simple sparse table indexed by slot, bringing the two representations
closer to each other in terms of conceptual layout and performance.
Doing so has a number of interesting effects:
* mainnet startup time is improved 3-5x (3s on my laptop)
* the _first_ startup might take slightly longer as the new index is
being built - ~10s on the same laptop
* we no longer rely on the beacon block summaries to load the full dag -
this is a lot faster because we no longer have to look up each block by
parent root
* a collateral benefit is that we no longer need to load the full
summaries table into memory - we get the RSS benefits of #3164 without
the CPU hit.
Other random stuff:
* simplify forky block generics
* fix withManyWrites multiple evaluation
* fix validator key cache not being updated properly in chaindag
read-only mode
* drop pre-altair summaries from `kvstore`
* recreate missing summaries from altair+ blocks as well (in case
database has lost some to an involuntary restart)
* print database startup timings in chaindag load log
* avoid allocating superfluos state at startup
* use a recursive sql query to load the summaries of the unfinalized
blocks
* Harden handling of unviable forks
In our current handling of unviable forks, we allow peers to send us
blocks that come from a different fork - this is not necessarily an
error as it can happen naturally, but it does open up the client to a
case where the same unviable fork keeps getting requested - rather than
allowing this to happen, we'll now give these peers a small negative
score - if it keeps happening, we'll disconnect them.
* keep track of unviable forks in quarantine, to avoid filling it with
known junk
* collect peer scores in single module
* descore peers when they send unviable blocks during sync
* don't give score for duplicate blocks
* increase quarantine size to a level that allows finality to happen
under optimal conditions - this helps avoid downloading the same blocks
over and over in case of an unviable fork
* increase initial score for new peers to make room for one more failure
before disconnection
* log and score invalid/unviable blocks in requestmanager too
* avoid ChainDAG dependency in quarantine
* reject gossip blocks with unviable parent
* continue processing unviable sync blocks in order to build unviable
dag
* docs
* Update beacon_chain/consensus_object_pools/block_pools_types.nim
* add unviable queue test
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
The new format is based on compressed CSV files in two channels:
* Detailed per-epoch data
* Aggregated "daily" summaries
The use of append-only CSV file speeds up significantly the epoch
processing speed during data generation. The use of compression
results in smaller storage requirements overall. The use of the
aggregated files has a very minor cost in both CPU and storage,
but leads to near interactive speed for report generation.
Other changes:
- Implemented support for graceful shut downs to avoid corrupting
the saved files.
- Fixed a memory leak caused by lacking `StateCache` clean up on each
iteration.
- Addressed review comments
- Moved the rewards and penalties calculation code in a separate module
Required invasive changes to existing modules:
- The `data` field of the `KeyedBlockRef` type is made public to be used
by the validator rewards monitor's Chain DAG update procedure.
- The `getForkedBlock` procedure from the `blockchain_dag.nim` module
is made public to be used by the validator rewards monitor's Chain DAG
update procedure.
Time in the beacon chain is expressed relative to the genesis time -
this PR creates a `beacon_time` module that collects helpers and
utilities for dealing the time units - the new module does not deal with
actual wall time (that's remains in `beacon_clock`).
Collecting the time related stuff in one place makes it easier to find,
avoids some circular imports and allows more easily identifying the code
actually needs wall time to operate.
* move genesis-time-related functionality into `spec/beacon_time`
* avoid using `chronos.Duration` for time differences - it does not
support negative values (such as when something happens earlier than it
should)
* saturate conversions between `FAR_FUTURE_XXX`, so as to avoid
overflows
* fix delay reporting in validator client so it uses the expected
deadline of the slot, not "closest wall slot"
* simplify looping over the slots of an epoch
* `compute_start_slot_at_epoch` -> `start_slot`
* `compute_epoch_at_slot` -> `epoch`
A follow-up PR will (likely) introduce saturating arithmetic for the
time units - this is merely code moves, renames and fixing of small
bugs.
* Harden CommitteeIndex, SubnetId, SyncSubcommitteeIndex
Harden the use of `CommitteeIndex` et al to prevent future issues by
using a distinct type, then validating before use in several cases -
datatypes in spec are kept simple though so that invalid data still can
be read.
* fix invalid epoch used in REST
`/eth/v1/beacon/states/{state_id}/committees` committee length (could
return invalid data)
* normalize some variable names
* normalize committee index loops
* fix `RestAttesterDuty` to use `uint64` for `validator_committee_index`
* validate `CommitteeIndex` on ingress in REST API
* update rest rules with stricter parsing
* better REST serializers
* save lots of memory by not using `zip` ...at least a few bytes!
* use v1.1.6 test vectors; use BeaconTime instead of Slot in fork choice
* tick through every slot at least once
* use div INTERVALS_PER_SLOT and use precomputed constants of them
* use correct (even if numerically equal) constant
Validator monitoring based on and mostly compatible with the
implementation in Lighthouse - tracks additional logs and metrics for
specified validators so as to stay on top on performance.
The implementation works more or less the following way:
* Validator pubkeys are singled out for monitoring - these can be
running on the node or not
* For every action that the validator takes, we record steps in the
process such as messages being seen on the network or published in the
API
* When the dust settles at the end of an epoch, we report the
information from one epoch before that, which coincides with the
balances being updated - this is a tradeoff between being correct
(waiting for finalization) and providing relevant information in a
timely manner)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
As of https://github.com/status-im/nim-eth/pull/379 `nim-eth` defines a
couple static test cases for merkle proof verification.
Since the EF has defined a `is_valid_merkle_branch` function in the spec
we are no longer using the custom implementation from `nim-eth`, but the
tests were never ported to target the new implementation. This patch now
follows up on that and integrates those tests from `nim-eth`.
* BlockId reform
Introduce `BlockId` that helps track a root/slot pair - this prepares
the codebase for backfilling and handling out-of-dag blocks
* move block dag code to separate module
* fix finalised state root in REST event stream
* fix finalised head computation on head update, when starting from
checkpoint
* clean up chaindag init
* revert `epochAncestor` change in introduced in #3144 that would return
an epoch ancestor from the canoncial history instead of the given
history, causing `EpochRef` keys to point to the wrong block
* Introduce slot->BlockRef mapping for finalized chain
The finalized chain is linear, thus we can use a seq to lookup blocks by
slot number.
Here, we introduce such a seq, even though in the future, it should
likely be backed by a database structure instead, or, more likely, a
flat era file with a flat lookup index.
This dramatically speeds up requests by slot, such as those coming from
the REST interface or GetBlocksByRange, as these are currently served by
a linear iteration from head.
* fix REST block requests to not return blocks from an earlier slot when
the given slot is empty
* fix StateId interpretation such that it doesn't treat state roots as
block roots
* don't load full block from database just to return its root
* move quarantine outside of chaindag
The quarantine has been part of the ChainDAG for the longest time, but
this design has a few issues:
* the function in which blocks are verified and added to the dag becomes
reentrant and therefore difficult to reason about - we're currently
using a stateful flag to work around it
* quarantined blocks bypass the processing queue leading to a processing
stampede
* the quarantine flow is unsuitable for orphaned attestations - these
should also should be quarantined eventually
Instead of processing the quarantine inside ChainDAG, this PR moves
re-queueing to `block_processor` which already is responsible for
dealing with follow-up work when a block is added to the dag
This sets the stage for keeping attestations in the quarantine as well.
Also:
* make `BlockError` `{.pure.}`
* avoid use of `ValidationResult` in block clearance (that's for gossip)
* ncli_db: add putState, putBlock
These tools allow modifying an existing nimbus database for the purpose
of recovery or reorg, moving the head, tail and genesis to arbitrary
points.
* remove potentially expensive `putState` in `BeaconStateDB`
* introduce `latest_block_root` which computes the root of the latest
applied block from the `latest_block_header` field (instead of passing
it in separately)
* avoid some unnecessary BeaconState copies during init
* discover https://github.com/nim-lang/Nim/issues/19094
* prefer `HashedBeaconState` in a few places to avoid recomputing state
root
* fetch latest block root from state when creating blocks
* harden `get_beacon_proposer_index` against invalid slots and document
* move random spec function tests to `test_spec.nim`
* avoid unnecessary state root computation before block proposal
* Support starting from altair
* hide `finalized-checkpoint-` - they are incomplete and usage may cause
crashes
* remove genesis detection code (broken, obsolete)
* enable starting ChainDAG from altair checkpoints - this is a
prerequisite for checkpoint sync (TODO: backfill)
* tighten checkpoint state conditions
* show error when starting from checkpoint with existing database (not
supported)
* print rest-compatible JSON in ncli/state_sim
* altair/merge support in ncli
* more altair/merge support in ncli_db
* pre-load header to speed up loading
* fix forked block decoding
* "official" -> "scenarios", like the submodule
* fewer test binaries - various compile hacks have been improved over
time, test suite should follow
* remove obsolete bls tests - there are better test vectors in
nim-blscurve
* remove obsolete mentions of `ssz_testing`
* remove obsolete comments about proc vs globals, unittest2 already uses
proc's
So far, SSZ tests for `uint128` and `uint256` integers were disabled
due to "compile-time issues". The code has been adjusted to support
those additional test vectors, and the corresponding tests have been
enabled.
Adds a function that constructs a Merkle proof for a generalized index.
This will be used during light client sync to update light clients with
a new state (see NEXT_SYNC_COMMITTEE_INDEX / FINALIZED_ROOT_INDEX).
When sync committee message handling was introduced in #2830, the edge
case of the same validator being selected multiple times as part of a
sync subcommittee was not covered. Not handling that edge case makes
sync contributions have a lower-than-expected participation rate as each
sync validator is only counted up through once per subcommittee.
This patch ensures that this edge case is properly covered.
* reorganize ssz dependencies
This PR continues the work in
https://github.com/status-im/nimbus-eth2/pull/2646,
https://github.com/status-im/nimbus-eth2/pull/2779 as well as past
issues with serialization and type, to disentangle SSZ from eth2 and at
the same time simplify imports and exports with a structured approach.
The principal idea here is that when a library wants to introduce SSZ
support, they do so via 3 files:
* `ssz_codecs` which imports and reexports `codecs` - this covers the
basic byte conversions and ensures no overloads get lost
* `xxx_merkleization` imports and exports `merkleization` to specialize
and get access to `hash_tree_root` and friends
* `xxx_ssz_serialization` imports and exports `ssz_serialization` to
specialize ssz for a specific library
Those that need to interact with SSZ always import the `xxx_` versions
of the modules and never `ssz` itself so as to keep imports simple and
safe.
This is similar to how the REST / JSON-RPC serializers are structured in
that someone wanting to serialize spec types to REST-JSON will import
`eth2_rest_serialization` and nothing else.
* split up ssz into a core library that is independendent of eth2 types
* rename `bytes_reader` to `codec` to highlight that it contains coding
and decoding of bytes and native ssz types
* remove tricky List init overload that causes compile issues
* get rid of top-level ssz import
* reenable merkleization tests
* move some "standard" json serializers to spec
* remove `ValidatorIndex` serialization for now
* remove test_ssz_merkleization
* add tests for over/underlong byte sequences
* fix broken seq[byte] test - seq[byte] is not an SSZ type
There are a few things this PR doesn't solve:
* like #2646 this PR is weak on how to handle root and other
dontSerialize fields that "sometimes" should be computed - the same
problem appears in REST / JSON-RPC etc
* Fix a build problem on macOS
* Another way to fix the macOS builds
Co-authored-by: Zahary Karadjov <zahary@gmail.com>
* Implement split preset/config support
This is the initial bulk refactor to introduce runtime config values in
a number of places, somewhat replacing the existing mechanism of loading
network metadata.
It still needs more work, this is the initial refactor that introduces
runtime configuration in some of the places that need it.
The PR changes the way presets and constants work, to match the spec. In
particular, a "preset" now refers to the compile-time configuration
while a "cfg" or "RuntimeConfig" is the dynamic part.
A single binary can support either mainnet or minimal, but not both.
Support for other presets has been removed completely (can be readded,
in case there's need).
There's a number of outstanding tasks:
* `SECONDS_PER_SLOT` still needs fixing
* loading custom runtime configs needs redoing
* checking constants against YAML file
* yeerongpilly support
`build/nimbus_beacon_node --network=yeerongpilly --discv5:no --log-level=DEBUG`
* load fork epoch from config
* fix fork digest sent in status
* nicer error string for request failures
* fix tools
* one more
* fixup
* fixup
* fixup
* use "standard" network definition folder in local testnet
Files are loaded from their standard locations, including genesis etc,
to conform to the format used in the `eth2-networks` repo.
* fix launch scripts, allow unknown config values
* fix base config of rest test
* cleanups
* bundle mainnet config using common loader
* fix spec links and names
* only include supported preset in binary
* drop yeerongpilly, add altair-devnet-0, support boot_enr.yaml
* add blockchain_dag altair database reading; add rollback tests; fix some unnecessary type conversions
* remove debugging scaffolding
* proposeSignedBlock() will need to be async for merge; introduce altair types to VC
* introduce immutable Altair BeaconState
* add database support for Altair blocks and states
* add tests for Altair get/put/contains/delete state
* enable blockchain_dag Altair state database storing
* properly return error on getting missing altair block
* use StateData in place of BeaconState outside state transition code
* propagate more StateData usage
* remove withStateVars().state
* wrap get_beacon_committee(BeaconState, ...) as gbc(StateData, ...)
* switch makeAttestation() to use StateData
* use StateData wrapper/dispatcher for get_committee_count_per_slot()
* convert AttestationCache.init(), weak subjectivity functions, and updateValidatorMetrics()
* add get_shuffled_active_validator_indices(StateData) and get_block_root_at_slot(StateData)
* switch makeAttestationData() to StateData
* sync AllTests-mainnet.md after rebase
* Revert "Revert "Upgrade database schema" (#2570)"
This reverts commit 6057c2ffb4.
* ssz: fix loading empty lists into existing instances
Not a problem earlier because we didn't reuse instances
* bump nim-eth
* bump nim-web3
The `kvstore` design we're using now turns out to not be the best way to
use `sqlite` - in particular, there are some significant benefits to
using rowid in certain situations and to keep data in separate tables.
With this branch, there are massive improvements in startup time
(seconds instead of minutes) and state/block storage and pruning times
(milliseconds instead of seconds) - these improvements can in particular
be seen on slow drives and translate directly into better attestation
performance.
* update kvstore to new keyspace design
* remove `DirStoreRef` and the hidden `--state-db-kind` option - this
was an experiment to store large blobs in files, but with the new
kvstore, there's no compelling reason to do so
* remove `DbMap` - unused and would need updating for new keyspace
design
* introduce separate tables for each data type (blocks, states etc)
* remove "WITHOUT ROWID" pessimization for tables with large blobs
* close DbSeq statements explicitly (and earlier)
* store beacon block summaries in separate table, without SSZ
compression and load them all with single query on startup
* stop storing backwards compat full states
* mark genesis beacon block as trusted
* avoid faststreams when loading SSZ data
* remove `DisagreementBehavior` (unused)
Currently, we have a bit of a convoluted flow where when sending
attestations, we start broadcasting them over gossip then pass them to
the attestation validation to include them in the local attestation pool
- it should be the other way around: we should be checking attestations
_before_ gossipping them - this serves as an additional safety net to
ensure that we don't publish junk - this becomes more important when
publishing attestations from the API.
Also, the REST API was performing its own validation meaning
attestations coming from REST would be validated twice - finally, the
JSON RPC wasn't pre-validating and would happily broadcast invalid
attestations.
* Unified attestation production pipeline with the same flow for gossip,
locally and API-produced attestations: all are now validated and entered
into the pool, then broadcast/republished
* Refactor subnet handling with specific SubnetId alias, streamlining
where subnets are computed, avoiding the need to pass around the number
of active validators
* Move some of the subnet handling code to eth2_network
* Use BitArray throughout for subnet handling
* Introduce unittest2 and junit reports
* fix XML path
* don't combine multiple CI runs
* fixup
* public combined report also
Co-authored-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
With the introduction of batching and lazy attestation aggregation, it
no longer makes sense to enqueue attestations between the signature
check and adding them to the attestation pool - this only takes up
valuable CPU without any real benefit.
* add successfully validated attestations to attestion pool directly
* avoid copying participant list around for single-vote attestations,
pass single validator index instead
* release decompressed gossip memory earlier, specially during async
message validation
* use cooked signatures in a few more places to avoid reloads and errors
* remove some Defect-raising versions of signature-loading
* release decompressed data memory before validating message
This is a revamp of the attestation pool that cleans up several aspects
of attestation processing as the network grows larger and block space
becomes more precious.
The aim is to better exploit the divide between attestation subnets and
aggregations by keeping the two kinds separate until it's time to either
produce a block or aggregate. This means we're no longer eagerly
combining single-vote attestations, but rather wait until the last
moment, and then try to add singles to all aggregates, including those
coming from the network.
Importantly, the branch improves on poor aggregate quality and poor
attestation packing in cases where block space is running out.
A basic greed scoring mechanism is used to select attestations for
blocks - attestations are added based on how much many new votes they
bring to the table.
* Collect single-vote attestations separately and store these until it's
time to make aggregates
* Create aggregates based on single-vote attestations
* Select _best_ aggregate rather than _first_ aggregate when on
aggregation duty
* Top up all aggregates with singles when it's time make the attestation
cut, thus improving the chances of grabbing the best aggregates out
there
* Improve aggregation test coverage
* Improve bitseq operations
* Simplify aggregate signature creation
* Make attestation cache temporary instead of storing it in attestation
pool - most of the time, blocks are not being produced, no need to keep
the data around
* Remove redundant aggregate storage that was used only for RPC
* Use tables to avoid some linear seeks when looking up attestation data
* Fix long cleanup on large slot jumps
* Avoid some pointers
* Speed up iterating all attestations for a slot (fixes#2490)
* Reset cached indices when resetting cache on SSZ read
When deserializing into an existing structure, the cache should be
cleared - goes for json also. Also improve error messages.
* update some v1.1.0 alpha1 to alpha2
* remove unused getDepositMessage overload and move other out of datatypes/base
* bump nim-eth2-scenarios to download v1.1.0-alpha.2 test vectors
* construct object rather than result
* initial immutable validator database factoring
* remove changes from chain_dag: this abstraction properly belongs in beacon_chain_db
* add merging mutable/immutable validator portions; individually test database roundtripping of immutable validators and states-sans-immutable-validators
* update test summaries
* use stew/assign2 instead of Nim assignment
* add reading/writing of immutable validators in chaindag
* remove unused import
* replace chunked k/v store of immutable validators with per-row SQL table storage
* use List instead of HashList
* un-stub some ncli_db code so that it uses
* switch HashArray to array; move BeaconStateNoImmutableValidators from datatypes to beacon_chain_db
* begin only-mutable-part state storage
* uncomment some assigns
* work around https://github.com/nim-lang/Nim/issues/17253
* fix most of the issues/oversights; local sim runs again
* fix test suite by adding missing beaconstate field to copy function
* have ncli bench also store immutable validators
* extract some immutable-validator-specific code from the beacon chain db module
* add more rigorous database state roundtripping, with changing validator sets
* adjust ncli_db to use new schema
* simplify putState/getState by moving all immutable validator accounting into beacon state DB
* remove redundant test case and move code to immutable-beacon-chain module
* more efficient, but still brute-force, mutable+immutable validator merging
* reuse BeaconState in getState
* ensure HashList/HashArray caches are cleared when reusing getState buffers; add ncli_db and a unit test to verify this
* HashList.clear() -> HashList.clearCache()
* only copy incrementally necessary immutable validators
* increase strictness of test cases and fix/work around resulting HashList cache invalidation issues
* remove explanatory scaffolding
* allow for storage of full (with all validators) states for backwards/forwards-compatibility
* adjust DbSeq type usage
* store full, with-validators, state every 64 epochs to enable reverting versions
* reduce memory allocation and intermediate objects in state storage codepath
* eliminate allocation/copying through intermediate BeaconStateNoImmutableValidators objects
* skip benchmarking initial genesis-validator-heavy state store
* always store new-style state and sometimes old-style state
* document intent behind BeaconState/Validator type-punnery
* more accurate failure message on SQLite in-memory database initialization failure
* Create CLI tool for slashing export
* Use SQLite as a DB instead of a KV-store
* Keeps v1 and v2 DBs around
* Uses the same schema as Lighthouse v1.1.0
* Passes all interchange tests + skeleton of finalization pruning
* Removes tests that would violate v5 / minimal slashing DB and MinSlot rules
* Migration tool added using low-watermark scheme for faster migration of large number of validators
* detect already-aggregate-voted condition before attestation pool; add is_aggregator tests
* replace pair of attestation-per-epoch tracking lists with single list and remove Option use
* fix attestation condition
* use safer type conversions; add more is_aggregator tests
* update ve1.0.0-rc.0 preset spec references
* remove runtime preset ETH1_FOLLOW_DISTANCE from preset files; remove two CI build items to try to keep Travis from timing out
* in exit pool, filter out already-packaged messages; bundle remaining messages into beaconblocks
* filter messages at block construction time
* allow adding up to intended capacity of buffers, beyond per-block limits
* document rationale/design for filtering mechanism
about 40% better slot processing times (with LTO enabled) - these don't
do BLS but are used
heavily during replay (state transition = slot + block transition)
tests using a recent medalla state and advancing it 1000 slots:
```
./ncli slots --preState2:state-302271-3c1dbf19-c1f944bf.ssz --slot:1000
--postState2:xx.ssz
```
pre:
```
All time are ms
Average, StdDev, Min, Max, Samples,
Test
Validation is turned off meaning that no BLS operations are performed
39.236, 0.000, 39.236, 39.236, 1,
Load state from file
0.049, 0.002, 0.046, 0.063, 968,
Apply slot
256.504, 81.008, 213.471, 591.902, 32,
Apply epoch slot
28.597, 0.000, 28.597, 28.597, 1,
Save state to file
```
cast:
```
All time are ms
Average, StdDev, Min, Max, Samples,
Test
Validation is turned off meaning that no BLS operations are performed
37.079, 0.000, 37.079, 37.079, 1,
Load state from file
0.042, 0.002, 0.040, 0.090, 968,
Apply slot
215.552, 68.763, 180.155, 500.103, 32,
Apply epoch slot
25.106, 0.000, 25.106, 25.106, 1,
Save state to file
```
cast+rewards:
```
All time are ms
Average, StdDev, Min, Max, Samples,
Test
Validation is turned off meaning that no BLS operations are performed
40.049, 0.000, 40.049, 40.049, 1,
Load state from file
0.048, 0.001, 0.045, 0.060, 968,
Apply slot
164.981, 76.273, 142.099, 477.868, 32,
Apply epoch slot
28.498, 0.000, 28.498, 28.498, 1,
Save state to file
```
cast+rewards+shr
```
All time are ms
Average, StdDev, Min, Max, Samples,
Test
Validation is turned off meaning that no BLS operations are performed
12.898, 0.000, 12.898, 12.898, 1,
Load state from file
0.039, 0.002, 0.038, 0.054, 968,
Apply slot
139.971, 68.797, 120.088, 428.844, 32,
Apply epoch slot
24.761, 0.000, 24.761, 24.761, 1,
Save state to file
```
This implements disparity, resolving a part of
https://github.com/status-im/nim-beacon-chain/issues/1367
* make BeaconTime a duration for fractional seconds
* factor out attestation/aggregate validation
* simplify recording of queued attestations
* simplify attestation signature check
* fix blocks_received metric
* add some trivial validation tests
* remove unresolved attestation table - attestations for unknown blocks
are dropped instead (cannot verify their signature)
* collect all epochrefs in specific blocks to make them easier to find
and to avoid lots of small seqs
* reuse validator key databases more aggressively by comparing keys
* make state cache available from within `withState`
* make epochRef available from within onBlockAdded callback
* integrate getEpochInfo into block resolution and epoch ref logic such
that epochrefs are created when blocks are added to pool or lazily when
needed by a getEpochRef
* fill state cache better from EpochRef, speeding up replay and
validation
* store epochRef in specific blocks to make them easier to find and
reuse
* fix database corruption when state is saved while replaying quarantine
* replay slots fully from block pool before processing state
* compare bls values more smartly
* store epoch state without block applied in database - it's recommended
to resync the node!
this branch will drastically speed up processing in times of long
non-finality, as well as cut memory usage by 10x during the recent
medalla madness.