* add doppelganger detection explanation to FAQ and link to Joe's guide from our Pi guide
* Edit CLI options page
* cp
* merge with ith unstable
* prysm migration guide: add steps until import slashing db
* update systemd
* update troubleshooting
* update pi guide
* metrics: replace winners with community
* update migration guide
* cp
* progress with guides, various edits
* Error when specifying an invalid --data-dir (or --validator-dir)
* Error when entering an invalid validator public key (e.g. invalid hex value)
* Warning when attempting to export a validator not present in the local database
Some unnecessary remains of the v1 mode has been removed as well
* Revert "Revert "Upgrade database schema" (#2570)"
This reverts commit 6057c2ffb4.
* ssz: fix loading empty lists into existing instances
Not a problem earlier because we didn't reuse instances
* bump nim-eth
* bump nim-web3
This is a minimal performance hotfix for the kvstore table, such that
new databases get a kvstore table with rowid, fixing the most urgent
performance problem we have with pruning.
The `kvstore` design we're using now turns out to not be the best way to
use `sqlite` - in particular, there are some significant benefits to
using rowid in certain situations and to keep data in separate tables.
With this branch, there are massive improvements in startup time
(seconds instead of minutes) and state/block storage and pruning times
(milliseconds instead of seconds) - these improvements can in particular
be seen on slow drives and translate directly into better attestation
performance.
* update kvstore to new keyspace design
* remove `DirStoreRef` and the hidden `--state-db-kind` option - this
was an experiment to store large blobs in files, but with the new
kvstore, there's no compelling reason to do so
* remove `DbMap` - unused and would need updating for new keyspace
design
* introduce separate tables for each data type (blocks, states etc)
* remove "WITHOUT ROWID" pessimization for tables with large blobs
* close DbSeq statements explicitly (and earlier)
* store beacon block summaries in separate table, without SSZ
compression and load them all with single query on startup
* stop storing backwards compat full states
* mark genesis beacon block as trusted
* avoid faststreams when loading SSZ data
* remove `DisagreementBehavior` (unused)
This PR decreases the lead subscription time which should help
decrease bandwidth usage and CPU making the subscription for future
aggregation happen a bit later. There's room for more tuning here,
probably.
* fix missing negation from in #2550
* fix silly bitarray issues
* decrease subnet lead subscription time
* log all subnet switching source data
* rename subnet trackers to refer to stability and aggregate subnets
* more tests
Currently, we have a bit of a convoluted flow where when sending
attestations, we start broadcasting them over gossip then pass them to
the attestation validation to include them in the local attestation pool
- it should be the other way around: we should be checking attestations
_before_ gossipping them - this serves as an additional safety net to
ensure that we don't publish junk - this becomes more important when
publishing attestations from the API.
Also, the REST API was performing its own validation meaning
attestations coming from REST would be validated twice - finally, the
JSON RPC wasn't pre-validating and would happily broadcast invalid
attestations.
* Unified attestation production pipeline with the same flow for gossip,
locally and API-produced attestations: all are now validated and entered
into the pool, then broadcast/republished
* Refactor subnet handling with specific SubnetId alias, streamlining
where subnets are computed, avoiding the need to pass around the number
of active validators
* Move some of the subnet handling code to eth2_network
* Use BitArray throughout for subnet handling
This also makes future efforts to provide metrics and logs for
attestation efficiency easier
* Export rewards from epoch transition
* Use less memory for reward calculation (bool -> set[enum], field
alignment)
* Reuse reward memory when replaying, avoiding spike
* Allow replaying any range in ncli_db benchmark
When applying a block, we'll currently compute a state root for the
state after slot processing but before block processing - this is
unnecessary when a block is being applied because the intermediate state
root is never observed.