In split view situation, the canonical chain may only be served by a
tiny amount of peers, and branches may span long durations. Minority
branches may still have a large weight from attestations and should
be discovered. To assist with that, add a branch discovery module that
assists in such a situation by specifically targeting peers with unknown
histories and downloading from them, in addition to sync manager work
which handles popular branches.
There are situations where all states in the `blockchain_dag` are
occupied and cannot be borrowed.
- headState: Many assumptions in the code that it cannot be advanced
- clearanceState: Resets every time a new block gets imported, including
blocks from non-canonical branches
- epochRefState: Used even more frequently than clearanceState
This means that during the catch-up mechanic where the head state is
slowly advanced to wall clock to catch up on validator duties in the
situation where the canonical head is way behind non-canonical heads,
we cannot use any of the three existing states. In that situation,
Nimbus already consumes an increased amount of memory due to all the
`BlockRef`, fork choice states and so on, so experience is degraded.
It seems reasonable to allocate a fourth state temporarily during that
mechanic, until a new proposal could be made on the canonical chain.
Note that currently, on `unstable`, proposals _do_ happen every couple
hours because sync manager doesn't manage to discover additional heads
in a split-view scenario on Goerli. However, with the branch discovery
module, new blocks are discovered all the time, and the clearanceState
may no longer be borrowed as it is reset to different branch too often.
The extra state could also find other uses in the future, e.g., for
incremental computations as in reindexing the database, or online
collection of historical light client data.
The `clearanceState` points to the latest resolved block, regardless of
whether that block is canonical according to fork choice. If chain is
stalled and we want to prepare for resuming validator duties, we need
a recent state according to fork choice to avoid lag spikes and missing
slot timings.
Nimbus currently stops performing validator duties if the blockchain
does not progress for `node.config.syncHorizon` slots. This means that
the chain won't recover because no new blocks are proposed. To fix that,
continue performing validator duties if no progress is registered for a
long time, and none of our peers is indicating any progress.
In #5120, EIP-7044 support got added to the state transition function to
force `CAPELLA_FORK_VERSION` to be used when validiting `VoluntaryExit`
messages, irrespective of their `epoch`.
In #5637, similar logic was added when batch verifying BLS signatures,
which is used during gossip validation (libp2p gossipsub, and req/resp).
However, that logic did not match the one introduced in #5120, and only
uses `CAPELLA_FORK_VERSION` when a `VoluntaryExit`'s `epoch` was set to
a value `>= CAPELLA_FORK_EPOCH`. Otherwise, `BELLATRIX_FORK_VERSION`
would still be used when validating `VoluntaryExit`, e.g., with `epoch`
set to `0`, as is the case in this Holesky block:
- https://holesky.beaconcha.in/slot/1076985#voluntary-exits
Extracting the correct logic from #5120 into a function, and reusing it
when verifying BLS signatures fixes this issue, and also leverages the
exhaustive EF test suite that covers the (correct) #5120 logic.
This fix only affects networks that have EIP-7044 applied (post-Deneb).
Without the fix, Deneb blocks with a `VoluntaryExit` with `epoch` set to
`< CAPELLA_FORK_EPOCH` incorrectly fail to validate despite being valid.
Incorrect blocks that contain a malicious `VoluntaryExit` with `epoch`
set to `< CAPELLA_FORK_EPOCH` and signed using `BELLATRIX_FORK_VERSION`
_would_ pass the BLS verification stage, but subsequently fail the state
transition logic. Such blocks would still correctly be labeled invalid.
When using checkpoint sync, only checkpoint state is available, block is
not downloaded and backfilled later.
`dag.backfill` tracks latest filled `slot`, and latest `parent_root` for
which no block has been synced yet.
In checkpoint sync, this assumption is broken, because there, the start
`dag.backfill.slot` is set based on checkpoint state slot, and the block
is also not available.
However, sync manager in backward mode also requests `dag.backfill.slot`
and `block_clearance` then backfills the checkpoint block once it is
synced. But, there is no guarantee that a peer ever sends us that block.
They could send us all parent blocks and solely omit the checkpoint
block itself. In that situation, we would accept the parent blocks and
advance `dag.backfill`, and subsequently never request the checkpoint
block again, resulting in gap inside blocks DB that is never filled.
To mitigate that, the assumption is restored that `dag.backfill.slot`
is the latest filled `slot`, and `dag.backfill.parent_root` is the next
block that needs to be synced. By setting `slot` to `tail.slot + 1` and
`parent_root` to `tail.root`, we put a fake summary into `dag.backfill`
so that `block_clearance` only proceeds once checkpoint block exists.
When a block is introduced to the system both via REST and gossip at the
same time, we will call `storeBlock` from two locations leading to a
dupliace check race condition as we wait for the EL.
This issue may manifest in particular when using an external block
builder that itself publishes the block onto the gossip network.
* refactor enqueue flow
* simplify calling `addBlock`
* complete request manager verifier future for blobless blocks
* re-verify parent conditions before adding block
among other things, it might have gone stale or finalized between one
call and the other
* Perform block pre-check before validating execution
When syncing, blocks have not been gossip-validated and are therefore
prone to trivial faults like being known-unviable, duplicate or missing
their parent.
In addition, the duplicate-block check in BlockProcessor was not
considering the quarantine flow and would therefore cause
recently-quarantined blocks to be silenty dropped when their parent
appears delaying the sync end-game and thus causing longer startup
resync time.
This PR verifies trivial conditions before performing execution
validation thus avoiding duplicates and missing parents alike.
It also ensures that the fast-sync EL mode is used for finalized blocks
even if the EL is timing out / slow to respond - this allows the CL to
complete its sync faster and switch to "normal" lock-step at the head of
the chain more quickly, thus also allowing the EL to access the latest
consensensus information earlier.
* oops
* remove unused constant
* replace optimisticRoots table with field in BlockRef
* copyright year
* mark finalized blocks as verified on load
* Update beacon_chain/consensus_object_pools/block_dag.nim
Co-authored-by: Etan Kissling <etan@status.im>
* expand non-optimistic block checking to all pre-merge blocks; refactor markBlockVerified to use BlockRef rather than block root and remove superfluous caller in newPayload path replaced by addResolvedHeadBlock BlockRef construction
* don't treat finalized block specially; VALID status is sticky
---------
Co-authored-by: Etan Kissling <etan@status.im>
The consensus-spec-tests already cover the scenarios of our custom test
runner, so the custom tests can be removed. Also cleans up unused config
flags and related unreachable logic.
Just the variable, not yet `lcDataForkAtStateFork` / `atStateFork`.
- Shorten comment in `light_client.nim` to keep line width
- Do not rename `stateFork` mention in `runProposalForkchoiceUpdated`.
- Do not rename `stateFork` in `getStateField(dag.headState, fork)`
Rest is just a mechanical mass replace
When backfilling, we only need to download blocks that are newer than
MIN_EPOCHS_FOR_BLOCK_REQUESTS - the rest cannot reliably be fetched from
the network and does not have to be provided to others.
This change affects only trusted-node-synced clients - genesis sync
continues to work as before (because it needs to construct a state by
building it from genesis).
Those wishing to complete a backfill should do so with era files
instead.
* implement several capellaImplementationMissing points
* don't register validator activity for not-active validators
* don't check validator indices already coming out of committees which exist; must be active validators, or else other deeper bugs
We currently use `BlockError` for both beacon blocks and LC objects.
In light of EIP4844, we will likely also use it for blob sidecars.
To avoid confusion, renaming it to a more generic `VerifierError`,
and update its documentation to be more generic.
To avoid long lines as a followup, also renaming the `block_processor`'s
`BlockProcessingCompleted.completed`->`ProcessingStatus.completed` and
`BlockProcessingCompleted.notCompleted`->`ProcessingStatus.notCompleted`
This PR removes a bunch of code to make TNS aware of era files, avoiding
a duplicated backfill when era files are available.
* reuse chaindag for loading backfill state, replacing the TNS homebrew
* fix era block iteration to skip empty slots
* add tests for `can_advance_slots`
* Allow chain dag without genesis / block
This PR enables the initialization of the dag without access to blocks
or genesis state - it is a prerequisite for implementing a number of
interesting features:
* checkpoint sync without any block download
* pruning of blocks and states
* backfill checkpoint block
When the BN's head is reorged while shut down, reloading the BN will not
assign `BlockRef` to alternate branches. However, blocks from other
branches are still present in the database, leading to their descendants
incorrectly marked as `UnviableFork`. By restricting the check to blocks
that have been finalized, they should be reported as `MissingParent`
instead, eventually re-assigning a `BlockRef` to them.
In order to avoid full replays when validating attestations hailing from
untaken forks, it's better to keep shufflings separate from `EpochRef`
and perform a lookahead on the shuffling when processing the block that
determines them.
This also helps performance in the case where REST clients are trying to
perform lookahead on attestation duties and decreases memory usage by
sharing shufflings between EpochRef instances of the same dependent
root.
The justified and finalized `Checkpoint` are frequently passed around
together. This introduces a new `FinalityCheckpoint` data structure that
combines them into one.
Due to the large usage of this structure in fork choice, also took this
opportunity to update fork choice tests to the latest v1.2.0-rc.1 spec.
Many additional tests enabled, some need more work, e.g. EL mock blocks.
Also implemented `discard_equivocations` which was skipped in #3661,
and improved code reuse across fork choice logic while at it.
* optimistic sync
* flag that initially loaded blocks from database might need execution block root filled in
* return optimistic status in REST calls
* refactor blockslot pruning
* ensure beacon_blocks_by_{root,range} do not provide optimistic blocks
* handle forkchoice head being pre-merge with block being postmerge
* re-enable blocking head updates on validator duties
* fix is_optimistic_candidate_block per spec; don't crash with nil future
* fix is_optimistic_candidate_block per spec; don't crash with nil future
* mark blocks sans execution payloads valid during head update
Some upstream repos still need fixes, but this gets us close enough that
style hints can be enabled by default.
In general, "canonical" spellings are preferred even if they violate
nep-1 - this applies in particular to spec-related stuff like
`genesis_validators_root` which appears throughout the codebase.
* harden validator API against pre-finalized slot requests
* check `syncHorizon` when responding to validator api requests too far
from `head`
* limit state-id based requests to one epoch ahead of `head`
* put historic data bounds on block/attestation/etc validator production API, preventing them from being used with already-finalized slots
* add validator block smoke tests
* make rest test create a new genesis with the tests running roughly in
the first epoch to allow testing a few more boundary conditions
* era: load blocks and states
Era files contain finalized history and can be thought of as an
alternative source for block and state data that allows clients to avoid
syncing this information from the P2P network - the P2P network is then
used to "top up" the client with the most recent data. They can be
freely shared in the community via whatever means (http, torrent, etc)
and serve as a permanent cold store of consensus data (and, after the
merge, execution data) for history buffs and bean counters alike.
This PR gently introduces support for loading blocks and states in two
cases: block requests from rest/p2p and frontfilling when doing
checkpoint sync.
The era files are used as a secondary source if the information is not
found in the database - compared to the database, there are a few key
differences:
* the database stores the block indexed by block root while the era file
indexes by slot - the former is used only in rest, while the latter is
used both by p2p and rest.
* when loading blocks from era files, the root is no longer trivially
available - if it is needed, it must either be computed (slow) or cached
(messy) - the good news is that for p2p requests, it is not needed
* in era files, "framed" snappy encoding is used while in the database
we store unframed snappy - for p2p2 requests, the latter requires
recompression while the former could avoid it
* front-filling is the process of using era files to replace backfilling
- in theory this front-filling could happen from any block and
front-fills with gaps could also be entertained, but our backfilling
algorithm cannot take advantage of this because there's no (simple) way
to tell it to "skip" a range.
* front-filling, as implemented, is a bit slow (10s to load mainnet): we
load the full BeaconState for every era to grab the roots of the blocks
- it would be better to partially load the state - as such, it would
also be good to be able to partially decompress snappy blobs
* lookups from REST via root are served by first looking up a block
summary in the database, then using the slot to load the block data from
the era file - however, there needs to be an option to create the
summary table from era files to fully support historical queries
To test this, `ncli_db` has an era file exporter: the files it creates
should be placed in an `era` folder next to `db` in the data directory.
What's interesting in particular about this setup is that `db` remains
as the source of truth for security purposes - it stores the latest
synced head root which in turn determines where a node "starts" its
consensus participation - the era directory however can be freely shared
between nodes / people without any (significant) security implications,
assuming the era files are consistent / not broken.
There's lots of future improvements to be had:
* we can drop the in-memory `BlockRef` index almost entirely - at this
point, resident memory usage of Nimbus should drop to a cool 500-600 mb
* we could serve era files via REST trivially: this would drop backfill
times to whatever time it takes to download the files - unlike the
current implementation that downloads block by block, downloading an era
at a time almost entirely cuts out request overhead
* we can "reasonably" recreate detailed state history from almost any
point in time, turning an O(slot) process into O(1) effectively - we'll
still need caches and indices to do this with sufficient efficiency for
the rest api, but at least it cuts the whole process down to minutes
instead of hours, for arbitrary points in time
* CI: ignore failures with Nim-1.6 (temporary)
* test fixes
Co-authored-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Gracefully handles the new failure modes recently introduced to the DAG
as part of https://github.com/status-im/nimbus-eth2/pull/3513
Data that is deemed to exist but fails to load leads to an error log to
avoid suppressing logic errors accidentally. In `verifyFinalization`
mode, the assertions remain active.
Up til now, the block dag has been using `BlockRef`, a structure adapted
for a full DAG, to represent all of chain history. This is a correct and
simple design, but does not exploit the linearity of the chain once
parts of it finalize.
By pruning the in-memory `BlockRef` structure at finalization, we save,
at the time of writing, a cool ~250mb (or 25%:ish) chunk of memory
landing us at a steady state of ~750mb normal memory usage for a
validating node.
Above all though, we prevent memory usage from growing proportionally
with the length of the chain, something that would not be sustainable
over time - instead, the steady state memory usage is roughly
determined by the validator set size which grows much more slowly. With
these changes, the core should remain sustainable memory-wise post-merge
all the way to withdrawals (when the validator set is expected to grow).
In-memory indices are still used for the "hot" unfinalized portion of
the chain - this ensure that consensus performance remains unchanged.
What changes is that for historical access, we use a db-based linear
slot index which is cache-and-disk-friendly, keeping the cost for
accessing historical data at a similar level as before, achieving the
savings at no percievable cost to functionality or performance.
A nice collateral benefit is the almost-instant startup since we no
longer load any large indicies at dag init.
The cost of this functionality instead can be found in the complexity of
having to deal with two ways of traversing the chain - by `BlockRef` and
by slot.
* use `BlockId` instead of `BlockRef` where finalized / historical data
may be required
* simplify clearance pre-advancement
* remove dag.finalizedBlocks (~50:ish mb)
* remove `getBlockAtSlot` - use `getBlockIdAtSlot` instead
* `parent` and `atSlot` for `BlockId` now require a `ChainDAGRef`
instance, unlike `BlockRef` traversal
* prune `BlockRef` parents on finality (~200:ish mb)
* speed up ChainDAG init by not loading finalized history index
* mess up light client server error handling - this need revisiting :)
One more step on the journey to reduce `BlockRef` usage across the
codebase - this one gets rid of `StateData` whose job was to keep track
of which block was last assigned to a state - these duties have now been
taken over by `latest_block_root`, a fairly recent addition that
computes this block root from state data (at a small cost that should be
insignificant)
99% mechanical change.