* Fixes a segfault during block production when the Keymanager API
is disabled. The Keymanager is now disabled on half of the local
testnet nodes to catch such problems in the future.
* Fixes multiple potential stalls from REST requests being done
without a timeout. From practice, we know that such requests
can hang forever if not cancelled with a timeout. At best,
this would be a resource leak, at worst, it may lead to a
full stall of the client and missed validator duties.
* Changes some Options usages to Opt (for easier use of valueOr)
https://github.com/status-im/nimbus-eth2/pull/3944
The use of nested `awaitWithRetries` calls would have
resulted in an unexpected number of retries (3x3).
We now use regular `await` in outer layer to avoid the problem.
https://github.com/status-im/nimbus-eth2/pull/3943
The new code has an invariant that the `headMerkleizer` field in
the `Eth1Chain` is always kept in sync with the blocks stored in
the chain.
This invariant is now enforced better by doing the necessary merkleizer updates
in the `Eth1Chain.addBlock` function, in the `Eth1Chain.init` function and in the
`Eth1Chain.reset` function.
The justified and finalized `Checkpoint` are frequently passed around
together. This introduces a new `FinalityCheckpoint` data structure that
combines them into one.
Due to the large usage of this structure in fork choice, also took this
opportunity to update fork choice tests to the latest v1.2.0-rc.1 spec.
Many additional tests enabled, some need more work, e.g. EL mock blocks.
Also implemented `discard_equivocations` which was skipped in #3661,
and improved code reuse across fork choice logic while at it.
Incorporates the latest changes to the light client sync protocol based
on Devconnect AMS feedback. Note that this breaks compatibility with the
previous prototype, due to changes to data structures and endpoints.
See https://github.com/ethereum/consensus-specs/pull/2802
Other changes:
* logtrace can now verify sync committee messages and contributions
* Many unnecessary use of pairs() have been removed for consistency
* Map 40x BN response codes to BeaconNodeStatus.Incompatible in the VC
Some upstream repos still need fixes, but this gets us close enough that
style hints can be enabled by default.
In general, "canonical" spellings are preferred even if they violate
nep-1 - this applies in particular to spec-related stuff like
`genesis_validators_root` which appears throughout the codebase.
Up til now, the block dag has been using `BlockRef`, a structure adapted
for a full DAG, to represent all of chain history. This is a correct and
simple design, but does not exploit the linearity of the chain once
parts of it finalize.
By pruning the in-memory `BlockRef` structure at finalization, we save,
at the time of writing, a cool ~250mb (or 25%:ish) chunk of memory
landing us at a steady state of ~750mb normal memory usage for a
validating node.
Above all though, we prevent memory usage from growing proportionally
with the length of the chain, something that would not be sustainable
over time - instead, the steady state memory usage is roughly
determined by the validator set size which grows much more slowly. With
these changes, the core should remain sustainable memory-wise post-merge
all the way to withdrawals (when the validator set is expected to grow).
In-memory indices are still used for the "hot" unfinalized portion of
the chain - this ensure that consensus performance remains unchanged.
What changes is that for historical access, we use a db-based linear
slot index which is cache-and-disk-friendly, keeping the cost for
accessing historical data at a similar level as before, achieving the
savings at no percievable cost to functionality or performance.
A nice collateral benefit is the almost-instant startup since we no
longer load any large indicies at dag init.
The cost of this functionality instead can be found in the complexity of
having to deal with two ways of traversing the chain - by `BlockRef` and
by slot.
* use `BlockId` instead of `BlockRef` where finalized / historical data
may be required
* simplify clearance pre-advancement
* remove dag.finalizedBlocks (~50:ish mb)
* remove `getBlockAtSlot` - use `getBlockIdAtSlot` instead
* `parent` and `atSlot` for `BlockId` now require a `ChainDAGRef`
instance, unlike `BlockRef` traversal
* prune `BlockRef` parents on finality (~200:ish mb)
* speed up ChainDAG init by not loading finalized history index
* mess up light client server error handling - this need revisiting :)
One more step on the journey to reduce `BlockRef` usage across the
codebase - this one gets rid of `StateData` whose job was to keep track
of which block was last assigned to a state - these duties have now been
taken over by `latest_block_root`, a fairly recent addition that
computes this block root from state data (at a small cost that should be
insignificant)
99% mechanical change.
* Initial commit.
* Fix current test suite.
* Fix keymanager api test.
* Fix wss_sim.
* Add more keystore_management tests.
* Recover deleted isEmptyDir().
* Add `HttpHostUri` distinct type.
Move keymanager calls away from rest_beacon_calls to rest_keymanager_calls.
Add REST serialization of RemoteKeystore and Keystore object.
Add tests for Remote Keystore management API.
Add tests for Keystore management API (Add keystore).
Fix serialzation issues.
* Fix test to use HttpHostUri instead of Uri.
* Add links to specification in comments.
* Remove debugging echoes.
It's sometimes useful to simulate what happens when a chain runs from a
given state with a given set of private keys - `wss_sim` allows running
such a simulation.
One use of such a tool is to simulate a weak subjectivity attack,
creating alternative histories of the same chain:
https://notes.status.im/nimbus-insecura-network#
Time in the beacon chain is expressed relative to the genesis time -
this PR creates a `beacon_time` module that collects helpers and
utilities for dealing the time units - the new module does not deal with
actual wall time (that's remains in `beacon_clock`).
Collecting the time related stuff in one place makes it easier to find,
avoids some circular imports and allows more easily identifying the code
actually needs wall time to operate.
* move genesis-time-related functionality into `spec/beacon_time`
* avoid using `chronos.Duration` for time differences - it does not
support negative values (such as when something happens earlier than it
should)
* saturate conversions between `FAR_FUTURE_XXX`, so as to avoid
overflows
* fix delay reporting in validator client so it uses the expected
deadline of the slot, not "closest wall slot"
* simplify looping over the slots of an epoch
* `compute_start_slot_at_epoch` -> `start_slot`
* `compute_epoch_at_slot` -> `epoch`
A follow-up PR will (likely) introduce saturating arithmetic for the
time units - this is merely code moves, renames and fixing of small
bugs.
* Harden CommitteeIndex, SubnetId, SyncSubcommitteeIndex
Harden the use of `CommitteeIndex` et al to prevent future issues by
using a distinct type, then validating before use in several cases -
datatypes in spec are kept simple though so that invalid data still can
be read.
* fix invalid epoch used in REST
`/eth/v1/beacon/states/{state_id}/committees` committee length (could
return invalid data)
* normalize some variable names
* normalize committee index loops
* fix `RestAttesterDuty` to use `uint64` for `validator_committee_index`
* validate `CommitteeIndex` on ingress in REST API
* update rest rules with stricter parsing
* better REST serializers
* save lots of memory by not using `zip` ...at least a few bytes!
With checkpoint sync in particular, and state pruning in the future,
loading states or state-dependent data may fail. This PR adjusts the
code to allow this to be handled gracefully.
In particular, the new availability assumption is that states are always
available for the finalized checkpoint and newer, but may fail for
anything older.
The `tail` remains the point where state loading de-facto fails, meaning
that between the tail and the finalized checkpoint, we can still get
historical data (but code should be prepared to handle this as an
error).
However, to harden the code against long replays, several operations
which are assumed to work only with non-final data (such as gossip
verification and validator duties) now limit their search horizon to
post-finalized data.
* harden several state-dependent operations by logging an error instead
of introducing a panic when state loading fails
* `withState` -> `withUpdatedState` to differentiate from the other
`withState`
* `updateStateData` can now fail if no state is found in database - it
is also hardened against excessively long replays
* `getEpochRef` can now fail when replay fails
* reject blocks with invalid target root - they would be ignored
previously
* fix recursion bug in `isProposed`
* use v1.1.6 test vectors; use BeaconTime instead of Slot in fork choice
* tick through every slot at least once
* use div INTERVALS_PER_SLOT and use precomputed constants of them
* use correct (even if numerically equal) constant
Validator monitoring based on and mostly compatible with the
implementation in Lighthouse - tracks additional logs and metrics for
specified validators so as to stay on top on performance.
The implementation works more or less the following way:
* Validator pubkeys are singled out for monitoring - these can be
running on the node or not
* For every action that the validator takes, we record steps in the
process such as messages being seen on the network or published in the
API
* When the dust settles at the end of an epoch, we report the
information from one epoch before that, which coincides with the
balances being updated - this is a tradeoff between being correct
(waiting for finalization) and providing relevant information in a
timely manner)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
* batch-verify sync messages for a small perf boost
Generally reuses the same structure as attestation and aggregate
verification
* normalize `signatures` and `signature_batch` to use the same pattern
of verification
* normalize parameter names, order etc for signature stuff in general
* avoid calling `blsSign` directly - instead, go through `signatures`
consistently
* move quarantine outside of chaindag
The quarantine has been part of the ChainDAG for the longest time, but
this design has a few issues:
* the function in which blocks are verified and added to the dag becomes
reentrant and therefore difficult to reason about - we're currently
using a stateful flag to work around it
* quarantined blocks bypass the processing queue leading to a processing
stampede
* the quarantine flow is unsuitable for orphaned attestations - these
should also should be quarantined eventually
Instead of processing the quarantine inside ChainDAG, this PR moves
re-queueing to `block_processor` which already is responsible for
dealing with follow-up work when a block is added to the dag
This sets the stage for keeping attestations in the quarantine as well.
Also:
* make `BlockError` `{.pure.}`
* avoid use of `ValidationResult` in block clearance (that's for gossip)
Renames and cleanups split out from the validator monitoring branch, so
as to reduce conflict area vs other PR:s
* add constants for expected message timing
* name validators after the messages they validate, mostly, to make
grepping easier
* unify field naming of EpochInfo across forks to make cross-fork code
easier
* ncli_db: add putState, putBlock
These tools allow modifying an existing nimbus database for the purpose
of recovery or reorg, moving the head, tail and genesis to arbitrary
points.
* remove potentially expensive `putState` in `BeaconStateDB`
* introduce `latest_block_root` which computes the root of the latest
applied block from the `latest_block_header` field (instead of passing
it in separately)
* avoid some unnecessary BeaconState copies during init
* discover https://github.com/nim-lang/Nim/issues/19094
* prefer `HashedBeaconState` in a few places to avoid recomputing state
root
* fetch latest block root from state when creating blocks
* harden `get_beacon_proposer_index` against invalid slots and document
* move random spec function tests to `test_spec.nim`
* avoid unnecessary state root computation before block proposal
* Support starting from altair
* hide `finalized-checkpoint-` - they are incomplete and usage may cause
crashes
* remove genesis detection code (broken, obsolete)
* enable starting ChainDAG from altair checkpoints - this is a
prerequisite for checkpoint sync (TODO: backfill)
* tighten checkpoint state conditions
* show error when starting from checkpoint with existing database (not
supported)
* print rest-compatible JSON in ncli/state_sim
* altair/merge support in ncli
* more altair/merge support in ncli_db
* pre-load header to speed up loading
* fix forked block decoding
* fix stack overflow crash in REST/debug/getStateV2
* introduce `ForkyXxx` for generic type matching of `Xxx` across
branches (SomeHashedBeaconState -> ForkyHashedBeaconState et al) -
`Some` is already used for other types of type classes
* consolidate function naming in BeaconChainDB, use some generics
* import `forks.nim` from other spec modules and move `Forked*` helpers
around to resolve circular imports
* remove `ForkedBeaconState`, use `ForkedHashedBeaconState` throughout
(less data shuffling between the types)
* fix several cases of states being stored on stack in tests, causing
random failures on some platforms
* remove reading json support from ncli - this should be ported to the
rest json reading instead (doesn't currently work because stack sizes)
* `SyncCommitteeIndex` -> `SyncSubcommitteeIndex`
* `syncCommitteePeriod` -> `sync_committee_period` (spec spelling)
* tighten period comparisons
* fix assert when validating committee message with non-altair state in
REST api
There are a few locations in the code that compare the current epoch to
the various FORK_EPOCH constants and branch off into fork-specific code.
When a new fork is introduced, it is sometimes forgotten to update all
of those branch locations. This patch introduces a compile-time check
that ensures that all branches need to be covered exhaustively. This is
done by replacing if-elif structures with case expressions.
In tests, the private key was put into the validator deposit's withdraw
credentials so that it can be recovered later. This leads to problems
when creating the validators through other means that do not put the key
there. In general, mock private keys only depend on the validator index,
though, and because it is clear what the index of a validator is, it is
not actually needed to put the key into the credentials.
There are a number of locations in the code that get attestations on a
forked beacon state. For attestation pools test, a convenience wrapper
was available to reduce clutter. This patch integrates that wrapper into
the core component so that it can also take advantage of the wrapper.
The initialization of a `SyncAggregate` to its default value is not very
intuitive. There is an `init` function in `sync_committee_msg_pool` that
provides a convenience wrapper. This patch exports that initializer so
that the rest of the code base can also take advantage of it.