* Allow chain dag without genesis / block
This PR enables the initialization of the dag without access to blocks
or genesis state - it is a prerequisite for implementing a number of
interesting features:
* checkpoint sync without any block download
* pruning of blocks and states
* backfill checkpoint block
Now that the 1.2.0-rc.2 spec contains the same `LightClientUpdate`
definition that Nimbus was already using before, the corresponding
SSZ test vectors can be re-enabled.
The justified and finalized `Checkpoint` are frequently passed around
together. This introduces a new `FinalityCheckpoint` data structure that
combines them into one.
Due to the large usage of this structure in fork choice, also took this
opportunity to update fork choice tests to the latest v1.2.0-rc.1 spec.
Many additional tests enabled, some need more work, e.g. EL mock blocks.
Also implemented `discard_equivocations` which was skipped in #3661,
and improved code reuse across fork choice logic while at it.
Merkle proofs tend to have long underlying type definitions, e.g.,
`array[log2trunc(NEXT_SYNC_COMMITTEE_INDEX), Eth2Digest]`. For the
ones used in the LC sync protocol, dedicated types are introduced
to improve readability. Furthermore, the `CachedLightClientBootstrap`
wrapper that solely wrapped a merkle branch is eliminated.
This updates `nim-ssz-serialization` to
`3db6cc0f282708aca6c290914488edd832971d61`.
Notable changes:
- Use `uint64` for `GeneralizedIndex`
- Add support for building merkle multiproofs
Incorporates the latest changes to the light client sync protocol based
on Devconnect AMS feedback. Note that this breaks compatibility with the
previous prototype, due to changes to data structures and endpoints.
See https://github.com/ethereum/consensus-specs/pull/2802
Up til now, the block dag has been using `BlockRef`, a structure adapted
for a full DAG, to represent all of chain history. This is a correct and
simple design, but does not exploit the linearity of the chain once
parts of it finalize.
By pruning the in-memory `BlockRef` structure at finalization, we save,
at the time of writing, a cool ~250mb (or 25%:ish) chunk of memory
landing us at a steady state of ~750mb normal memory usage for a
validating node.
Above all though, we prevent memory usage from growing proportionally
with the length of the chain, something that would not be sustainable
over time - instead, the steady state memory usage is roughly
determined by the validator set size which grows much more slowly. With
these changes, the core should remain sustainable memory-wise post-merge
all the way to withdrawals (when the validator set is expected to grow).
In-memory indices are still used for the "hot" unfinalized portion of
the chain - this ensure that consensus performance remains unchanged.
What changes is that for historical access, we use a db-based linear
slot index which is cache-and-disk-friendly, keeping the cost for
accessing historical data at a similar level as before, achieving the
savings at no percievable cost to functionality or performance.
A nice collateral benefit is the almost-instant startup since we no
longer load any large indicies at dag init.
The cost of this functionality instead can be found in the complexity of
having to deal with two ways of traversing the chain - by `BlockRef` and
by slot.
* use `BlockId` instead of `BlockRef` where finalized / historical data
may be required
* simplify clearance pre-advancement
* remove dag.finalizedBlocks (~50:ish mb)
* remove `getBlockAtSlot` - use `getBlockIdAtSlot` instead
* `parent` and `atSlot` for `BlockId` now require a `ChainDAGRef`
instance, unlike `BlockRef` traversal
* prune `BlockRef` parents on finality (~200:ish mb)
* speed up ChainDAG init by not loading finalized history index
* mess up light client server error handling - this need revisiting :)
One more step on the journey to reduce `BlockRef` usage across the
codebase - this one gets rid of `StateData` whose job was to keep track
of which block was last assigned to a state - these duties have now been
taken over by `latest_block_root`, a fairly recent addition that
computes this block root from state data (at a small cost that should be
insignificant)
99% mechanical change.
When syncing as a light client, different behaviour is needed to handle
the various ways how errors may occur. The existing logic for blocks can
also be applied to light client objects:
- `Invalid`: Malformed object that is clearly an error by its producer.
- `MissingParent`: More data is needed to decide applicability.
- `UnviableFork`: Object may be valid but will never apply on this fork.
- `Duplicate`: No errors were encountered but the object was not useful.
This adopts the spec sections of the pre-release proposal of the libp2p
based light client sync protocol, and also adds a test runner for the
new accompanying tests. While the release version of the light client
sync protocol contains conflicting definitions, it is currently unused,
and the code specific to the pre-release proposal is marked as such.
See https://github.com/ethereum/consensus-specs/pull/2802
The spec does not provide code for validating the `fork_version` field
of `LightClientUpdate`. However, we can use our own logic for additional
validation of that field. The spec's python test suite sets up states
that do not follow the fork schedule (e.g., that use Altair fork version
before Altair fork epoch), which complicates upstreaming this as code.
In practice, the sync committee signs `LightClientUpdate` instances at
the next slot following the block. This is not correctly reflected in
the tests, where it is signed one slot early. This patch updates the
tests to use the correct slot for the computation.