The new format is based on compressed CSV files in two channels:
* Detailed per-epoch data
* Aggregated "daily" summaries
The use of append-only CSV file speeds up significantly the epoch
processing speed during data generation. The use of compression
results in smaller storage requirements overall. The use of the
aggregated files has a very minor cost in both CPU and storage,
but leads to near interactive speed for report generation.
Other changes:
- Implemented support for graceful shut downs to avoid corrupting
the saved files.
- Fixed a memory leak caused by lacking `StateCache` clean up on each
iteration.
- Addressed review comments
- Moved the rewards and penalties calculation code in a separate module
Required invasive changes to existing modules:
- The `data` field of the `KeyedBlockRef` type is made public to be used
by the validator rewards monitor's Chain DAG update procedure.
- The `getForkedBlock` procedure from the `blockchain_dag.nim` module
is made public to be used by the validator rewards monitor's Chain DAG
update procedure.
This is an alternative take on https://github.com/status-im/nimbus-eth2/pull/3107
that aims for more minimal interventions in the spec modules at the expense of
duplicating more of the spec logic in ncli_db.
Time in the beacon chain is expressed relative to the genesis time -
this PR creates a `beacon_time` module that collects helpers and
utilities for dealing the time units - the new module does not deal with
actual wall time (that's remains in `beacon_clock`).
Collecting the time related stuff in one place makes it easier to find,
avoids some circular imports and allows more easily identifying the code
actually needs wall time to operate.
* move genesis-time-related functionality into `spec/beacon_time`
* avoid using `chronos.Duration` for time differences - it does not
support negative values (such as when something happens earlier than it
should)
* saturate conversions between `FAR_FUTURE_XXX`, so as to avoid
overflows
* fix delay reporting in validator client so it uses the expected
deadline of the slot, not "closest wall slot"
* simplify looping over the slots of an epoch
* `compute_start_slot_at_epoch` -> `start_slot`
* `compute_epoch_at_slot` -> `epoch`
A follow-up PR will (likely) introduce saturating arithmetic for the
time units - this is merely code moves, renames and fixing of small
bugs.
* Harden CommitteeIndex, SubnetId, SyncSubcommitteeIndex
Harden the use of `CommitteeIndex` et al to prevent future issues by
using a distinct type, then validating before use in several cases -
datatypes in spec are kept simple though so that invalid data still can
be read.
* fix invalid epoch used in REST
`/eth/v1/beacon/states/{state_id}/committees` committee length (could
return invalid data)
* normalize some variable names
* normalize committee index loops
* fix `RestAttesterDuty` to use `uint64` for `validator_committee_index`
* validate `CommitteeIndex` on ingress in REST API
* update rest rules with stricter parsing
* better REST serializers
* save lots of memory by not using `zip` ...at least a few bytes!
* REST cleanups
* reject out-of-range committee requests
* print all hex values as lower-case
* allow requesting state information by head state root
* turn `DomainType` into array (follow spec)
* `uint_to_bytesXX` -> `uint_to_bytes` (follow spec)
* fix wrong dependent root in `/eth/v1/validator/duties/proposer/`
* update documentation - `--subscribe-all-subnets` is no longer needed
when using the REST interface with validator clients
* more fixes
* common helpers for dependent block
* remove test rules obsoleted by more strict epoch tests
* fix trailing commas
* Update docs/the_nimbus_book/src/rest-api.md
* Update docs/the_nimbus_book/src/rest-api.md
Co-authored-by: sacha <sacha@status.im>
Overhaul of era files, including documentation and reference
implementations
* store blocks, then state, then slot indices for easy lookup at low
cost
* document era file rationale
* altair+ support in era writer
With checkpoint sync in particular, and state pruning in the future,
loading states or state-dependent data may fail. This PR adjusts the
code to allow this to be handled gracefully.
In particular, the new availability assumption is that states are always
available for the finalized checkpoint and newer, but may fail for
anything older.
The `tail` remains the point where state loading de-facto fails, meaning
that between the tail and the finalized checkpoint, we can still get
historical data (but code should be prepared to handle this as an
error).
However, to harden the code against long replays, several operations
which are assumed to work only with non-final data (such as gossip
verification and validator duties) now limit their search horizon to
post-finalized data.
* harden several state-dependent operations by logging an error instead
of introducing a panic when state loading fails
* `withState` -> `withUpdatedState` to differentiate from the other
`withState`
* `updateStateData` can now fail if no state is found in database - it
is also hardened against excessively long replays
* `getEpochRef` can now fail when replay fails
* reject blocks with invalid target root - they would be ignored
previously
* fix recursion bug in `isProposed`
* Fix REST some rest call signatures and implement a simple API benchmark tool
* Implement #3129 (Optimized history traversals in the REST API)
Other notable changes:
The `updateStateData` procedure in the `blockchain_dag.nim` module is
optimized to not rewind down to the last snapshot state saved in the
database if the supplied input state can be used as a starting point
instead.
* Disallow await in withStateForBlockSlot
* log doppelganger detection when it activates and when it causes missed
duties
* less prominent eth1 sync progress
* log in-progress sync at notice only when actually missing duties
* better detail in replay log
* don't log finalization checkpoints - this is quite verbose when
syncing and already included in "Slot start"
With the right sequence of events (for example a REST request or a
validation), it can happen that the first traversal across a state
checkpoint boundary is done without storing that state on disk - this
causes problens when replaying states, because now states may be missing
from the database.
Here, we simply avoid using the caches when advancing a state that will
go into the database, ensuring that the information lost during caching
always is permanently stored.
* fix recursion bug in `isProposed`
* use v1.1.6 test vectors; use BeaconTime instead of Slot in fork choice
* tick through every slot at least once
* use div INTERVALS_PER_SLOT and use precomputed constants of them
* use correct (even if numerically equal) constant
Introduced in #3171, it turns out we can just follow the block headers
to achieve the same effect
* leaves the constant in the code so as to avoid confusion when reading
database that had the constant written (such as the fleet nodes and
other unstable users)
Validator monitoring based on and mostly compatible with the
implementation in Lighthouse - tracks additional logs and metrics for
specified validators so as to stay on top on performance.
The implementation works more or less the following way:
* Validator pubkeys are singled out for monitoring - these can be
running on the node or not
* For every action that the validator takes, we record steps in the
process such as messages being seen on the network or published in the
API
* When the dust settles at the end of an epoch, we report the
information from one epoch before that, which coincides with the
balances being updated - this is a tradeoff between being correct
(waiting for finalization) and providing relevant information in a
timely manner)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
* BlockId reform
Introduce `BlockId` that helps track a root/slot pair - this prepares
the codebase for backfilling and handling out-of-dag blocks
* move block dag code to separate module
* fix finalised state root in REST event stream
* fix finalised head computation on head update, when starting from
checkpoint
* clean up chaindag init
* revert `epochAncestor` change in introduced in #3144 that would return
an epoch ancestor from the canoncial history instead of the given
history, causing `EpochRef` keys to point to the wrong block
* batch-verify sync messages for a small perf boost
Generally reuses the same structure as attestation and aggregate
verification
* normalize `signatures` and `signature_batch` to use the same pattern
of verification
* normalize parameter names, order etc for signature stuff in general
* avoid calling `blsSign` directly - instead, go through `signatures`
consistently
This removes some dead code from `getSubcommitteePositionsAux` which is
no longer needed since the introduction of `SyncCommitteeCache`.
This also cleans up some formatting, uses `let` instead of `var` where
possible, and uses implicit `pairs` in one case for consistency.
* Introduce slot->BlockRef mapping for finalized chain
The finalized chain is linear, thus we can use a seq to lookup blocks by
slot number.
Here, we introduce such a seq, even though in the future, it should
likely be backed by a database structure instead, or, more likely, a
flat era file with a flat lookup index.
This dramatically speeds up requests by slot, such as those coming from
the REST interface or GetBlocksByRange, as these are currently served by
a linear iteration from head.
* fix REST block requests to not return blocks from an earlier slot when
the given slot is empty
* fix StateId interpretation such that it doesn't treat state roots as
block roots
* don't load full block from database just to return its root
* move quarantine outside of chaindag
The quarantine has been part of the ChainDAG for the longest time, but
this design has a few issues:
* the function in which blocks are verified and added to the dag becomes
reentrant and therefore difficult to reason about - we're currently
using a stateful flag to work around it
* quarantined blocks bypass the processing queue leading to a processing
stampede
* the quarantine flow is unsuitable for orphaned attestations - these
should also should be quarantined eventually
Instead of processing the quarantine inside ChainDAG, this PR moves
re-queueing to `block_processor` which already is responsible for
dealing with follow-up work when a block is added to the dag
This sets the stage for keeping attestations in the quarantine as well.
Also:
* make `BlockError` `{.pure.}`
* avoid use of `ValidationResult` in block clearance (that's for gossip)
This allows `blockchain_dag`'s `withState` template to be called more
than once in a single function. This led to a compilation error before
because the injected variables and functions shared the same scope.
* add EF fork choice tests to CI
* checkpoints
* compilation fixes and add test to preset dependent suite
* support longpaths on Windows CI
* skip minimal tests (long paths issue + impl detals tested)
* fix stackoverflow on some platforms
* rebase on top of https://github.com/status-im/nimbus-eth2/pull/3054
* fix stack usage
Renames and cleanups split out from the validator monitoring branch, so
as to reduce conflict area vs other PR:s
* add constants for expected message timing
* name validators after the messages they validate, mostly, to make
grepping easier
* unify field naming of EpochInfo across forks to make cross-fork code
easier
* ncli_db: add putState, putBlock
These tools allow modifying an existing nimbus database for the purpose
of recovery or reorg, moving the head, tail and genesis to arbitrary
points.
* remove potentially expensive `putState` in `BeaconStateDB`
* introduce `latest_block_root` which computes the root of the latest
applied block from the `latest_block_header` field (instead of passing
it in separately)
* avoid some unnecessary BeaconState copies during init
* discover https://github.com/nim-lang/Nim/issues/19094
* prefer `HashedBeaconState` in a few places to avoid recomputing state
root
* fetch latest block root from state when creating blocks
* harden `get_beacon_proposer_index` against invalid slots and document
* move random spec function tests to `test_spec.nim`
* avoid unnecessary state root computation before block proposal
* Support starting from altair
* hide `finalized-checkpoint-` - they are incomplete and usage may cause
crashes
* remove genesis detection code (broken, obsolete)
* enable starting ChainDAG from altair checkpoints - this is a
prerequisite for checkpoint sync (TODO: backfill)
* tighten checkpoint state conditions
* show error when starting from checkpoint with existing database (not
supported)
* print rest-compatible JSON in ncli/state_sim
* altair/merge support in ncli
* more altair/merge support in ncli_db
* pre-load header to speed up loading
* fix forked block decoding