* electra attestation updates
In Electra, we have two attestation formats: on-chain and on-network -
the former combines all committees of a slot in a single committee bit
list.
This PR makes a number of cleanups to move towards fixing this -
attestation packing however still needs to be fixed as it currently
creates attestations with a single committee only which is very
inefficient.
* more attestations in the blocks
* signing and aggregation fixes
* tool fix
* test, import
In split view situation, the canonical chain may only be served by a
tiny amount of peers, and branches may span long durations. Minority
branches may still have a large weight from attestations and should
be discovered. To assist with that, add a branch discovery module that
assists in such a situation by specifically targeting peers with unknown
histories and downloading from them, in addition to sync manager work
which handles popular branches.
When quarantining a block from block processor, we should also keep a
copy of its blobs. Otherwise, this involves more network roundtrips
to obtain information we already have. This is in line with how blobs
arrive from gossip and request manager sources. The existing flow does
not work when applying blocks from quarantine, which is addressed here.
When checking for `MissingParent`, it may be that the parent block was
already discovered as part of a prior run. In that case, it can be
loaded from storage and processed without having to rediscover the
entire branch from the network. This is similar to #6112 but for blocks
that are discovered via gossip / sync mgr instead of via request mgr.
With checkpoint sync, the checkpoint block is typically unavailable at
the start, and only backfilled later. To avoid treating it as having
zero hash, execution disabled in some contexts, wrap the result of
`loadExecutionBlockHash` in `Opt` and handle block hash being unknown.
---------
Co-authored-by: Jacek Sieka <jacek@status.im>
Finish the rename started in #4809 to have a consistent naming.
`ExecutionPayloadHash` suggests hash over payload instead of block.
`BlockHash` is also the canonical name in engine API.
Full caches should not be used to mark blocks as unviable. The unviable
status is quite persistent and a block marked as such won't be processed
again once the cache empties. Problem originally introduced in #4808.
* use `PayloadAttributesV3` in `nimbus_light_client` for Deneb
From Deneb onward, `forkchoiceUpdated` requires `PayloadAttributesV3`.
In `nimbus_light_client` we still used `PayloadAttributesV2`.
Also clean up two other locations that were already correctly using
`PayloadAttributesV3`, to reduce code duplication.
* fix letter case
For symmetry with `forkyState` when using `withState`, and to avoid
problems with shadowing of `blck` when using `withBlck` in `template`,
also rename the injected `blck` to `forkyBlck`.
- https://github.com/nim-lang/Nim/issues/22698
Add separate log topic for `block_processor` messages.
Topic named similar to the other `_processor` modules:
- `eth2_processor` --> `gossip_eth2`
- `light_client_processor` --> `gossip_lc`
- `optimistic_processor` --> `gossip_opt`
When a block is introduced to the system both via REST and gossip at the
same time, we will call `storeBlock` from two locations leading to a
dupliace check race condition as we wait for the EL.
This issue may manifest in particular when using an external block
builder that itself publishes the block onto the gossip network.
* refactor enqueue flow
* simplify calling `addBlock`
* complete request manager verifier future for blobless blocks
* re-verify parent conditions before adding block
among other things, it might have gone stale or finalized between one
call and the other
* async batch verification
When batch verification is done, the main thread is blocked reducing
concurrency.
With this PR, the new thread signalling primitive in chronos is used to
offload the full batch verification process to a separate thread
allowing the main threads to continue async operations while the other
threads verify signatures.
Similar to previous behavior, the number of ongoing batch verifications
is capped to prevent runaway resource usage.
In addition to the asynchronous processing, 3 addition changes help
drive throughput:
* A loop is used for batch accumulation: this prevents a stampede of
small batches in eager mode where both the eager and the scheduled batch
runner would pick batches off the queue, prematurely picking "fresh"
batches off the queue
* An additional small wait is introduced for small batches - this helps
create slightly larger batches which make better used of the increased
concurrency
* Up to 2 batches are scheduled to the threadpool during high pressure,
reducing startup latency for the threads
Together, these changes increase attestation verification throughput
under load up to 30%.
* fixup
* Update submodules
* fix blst build issues (and a PIC warning)
* bump
---------
Co-authored-by: Zahary Karadjov <zahary@gmail.com>