A LibP2P-based networking stack;

To enable it, comment out the 'withLibp2p' line in nim.cfg

The history was squashed in order to remove an accidentally
commited binary file.

Other changes:

* SSZ was adapted to use the common serialization framework

* gossibsup.subscribe is not using async handlers at the moment
  and this allowed me to simplify it
This commit is contained in:
Zahary Karadjov 2019-03-06 00:54:08 +02:00 committed by zah
parent 434ba5727f
commit 903cb8a8b5
11 changed files with 1092 additions and 319 deletions

View File

@ -1,5 +1,8 @@
import
beacon_chain/version
packageName = "beacon_chain" packageName = "beacon_chain"
version = "0.0.1" version = versionAsStr
author = "Status Research & Development GmbH" author = "Status Research & Development GmbH"
description = "Eth2.0 research implementation of the beacon chain" description = "Eth2.0 research implementation of the beacon chain"
license = "MIT or Apache License 2.0" license = "MIT or Apache License 2.0"
@ -23,7 +26,8 @@ requires "nim >= 0.19.0",
"json_serialization", "json_serialization",
"json_rpc", "json_rpc",
"chronos", "chronos",
"yaml" "yaml",
"libp2p"
### Helper functions ### Helper functions
proc test(name: string, defaultLang = "c") = proc test(name: string, defaultLang = "c") =

View File

@ -1,6 +1,6 @@
import import
os, json, tables, options, os, json, tables, options,
chronicles, json_serialization, eth/common/eth_types_json_serialization, chronicles, serialization, json_serialization, eth/common/eth_types_json_serialization,
spec/[datatypes, digest, crypto], spec/[datatypes, digest, crypto],
eth/trie/db, ssz eth/trie/db, ssz
@ -37,7 +37,7 @@ proc init*(T: type BeaconChainDB, backend: TrieDatabaseRef): BeaconChainDB =
result.backend = backend result.backend = backend
proc putBlock*(db: BeaconChainDB, key: Eth2Digest, value: BeaconBlock) = proc putBlock*(db: BeaconChainDB, key: Eth2Digest, value: BeaconBlock) =
db.backend.put(subkey(type value, key), ssz.serialize(value)) db.backend.put(subkey(type value, key), SSZ.encode(value))
proc putHead*(db: BeaconChainDB, key: Eth2Digest) = proc putHead*(db: BeaconChainDB, key: Eth2Digest) =
db.backend.put(subkey(kHeadBlock), key.data) # TODO head block? db.backend.put(subkey(kHeadBlock), key.data) # TODO head block?
@ -55,7 +55,7 @@ proc putState*(db: BeaconChainDB, key: Eth2Digest, value: BeaconState) =
# the previous finalized state, if we have that stored. To consider # the previous finalized state, if we have that stored. To consider
# here is that the gap between finalized and present state might be # here is that the gap between finalized and present state might be
# significant (days), meaning replay might be expensive. # significant (days), meaning replay might be expensive.
db.backend.put(subkey(type value, key), ssz.serialize(value)) db.backend.put(subkey(type value, key), SSZ.encode(value))
proc putState*(db: BeaconChainDB, value: BeaconState) = proc putState*(db: BeaconChainDB, value: BeaconState) =
db.putState(hash_tree_root_final(value), value) db.putState(hash_tree_root_final(value), value)
@ -72,7 +72,10 @@ proc putTailBlock*(db: BeaconChainDB, key: Eth2Digest) =
proc get(db: BeaconChainDB, key: auto, T: typedesc): Option[T] = proc get(db: BeaconChainDB, key: auto, T: typedesc): Option[T] =
let res = db.backend.get(key) let res = db.backend.get(key)
if res.len != 0: if res.len != 0:
ssz.deserialize(res, T) try:
some(SSZ.decode(res, T))
except SerializationError:
none(T)
else: else:
none(T) none(T)

View File

@ -1,18 +1,17 @@
import import
std_shims/[os_shims, objects], net, sequtils, options, tables, std_shims/[os_shims, objects], net, sequtils, options, tables,
chronos, chronicles, confutils, eth/[p2p, keys], chronos, chronicles, confutils,
spec/[datatypes, digest, crypto, beaconstate, helpers, validator], conf, time, spec/[datatypes, digest, crypto, beaconstate, helpers, validator], conf, time,
state_transition, fork_choice, ssz, beacon_chain_db, validator_pool, extras, state_transition, fork_choice, ssz, beacon_chain_db, validator_pool, extras,
attestation_pool, block_pool, attestation_pool, block_pool, eth2_network,
mainchain_monitor, gossipsub_protocol, trusted_state_snapshots, mainchain_monitor, trusted_state_snapshots,
eth/trie/db, eth/trie/backends/rocksdb_backend eth/trie/db, eth/trie/backends/rocksdb_backend
type type
BeaconNode* = ref object BeaconNode* = ref object
network*: EthereumNode network*: Eth2Node
db*: BeaconChainDB db*: BeaconChainDB
config*: BeaconNodeConf config*: BeaconNodeConf
keys*: KeyPair
attachedValidators: ValidatorPool attachedValidators: ValidatorPool
blockPool*: BlockPool blockPool*: BlockPool
state*: StateData state*: StateData
@ -21,33 +20,21 @@ type
potentialHeads: seq[Eth2Digest] potentialHeads: seq[Eth2Digest]
const const
version = "v0.1" # TODO: read this from the nimble file
clientId = "nimbus beacon node " & version
topicBeaconBlocks = "ethereum/2.1/beacon_chain/blocks" topicBeaconBlocks = "ethereum/2.1/beacon_chain/blocks"
topicAttestations = "ethereum/2.1/beacon_chain/attestations" topicAttestations = "ethereum/2.1/beacon_chain/attestations"
topicfetchBlocks = "ethereum/2.1/beacon_chain/fetch" topicfetchBlocks = "ethereum/2.1/beacon_chain/fetch"
proc onBeaconBlock*(node: BeaconNode, blck: BeaconBlock) {.gcsafe.} proc onBeaconBlock*(node: BeaconNode, blck: BeaconBlock) {.gcsafe.}
import sync_protocol import sync_protocol
func shortValidatorKey(node: BeaconNode, validatorIdx: int): string = func shortValidatorKey(node: BeaconNode, validatorIdx: int): string =
($node.state.data.validator_registry[validatorIdx].pubkey)[0..7] ($node.state.data.validator_registry[validatorIdx].pubkey)[0..7]
func slotStart(node: BeaconNode, slot: Slot): Timestamp = func slotStart(node: BeaconNode, slot: Slot): Timestamp =
node.state.data.slotStart(slot) node.state.data.slotStart(slot)
proc ensureNetworkKeys*(dataDir: string): KeyPair = proc init*(T: type BeaconNode, conf: BeaconNodeConf): Future[BeaconNode] {.async.} =
# TODO:
# 1. Check if keys already exist in the data dir
# 2. Generate new ones and save them in the directory
# if necessary
return newKeyPair()
proc init*(T: type BeaconNode, conf: BeaconNodeConf): T =
new result new result
result.config = conf result.config = conf
@ -83,43 +70,36 @@ proc init*(T: type BeaconNode, conf: BeaconNodeConf): T =
result.blockPool = BlockPool.init(result.db) result.blockPool = BlockPool.init(result.db)
result.attestationPool = AttestationPool.init(result.blockPool) result.attestationPool = AttestationPool.init(result.blockPool)
result.keys = ensureNetworkKeys(string conf.dataDir) result.network = await createEth2Node(Port conf.tcpPort, Port conf.udpPort)
var address: Address
address.ip = parseIpAddress("127.0.0.1")
address.tcpPort = Port(conf.tcpPort)
address.udpPort = Port(conf.udpPort)
result.network =
newEthereumNode(result.keys, address, 0, nil, clientId, minPeers = 1)
let state = result.network.protocolState(BeaconSync) let state = result.network.protocolState(BeaconSync)
state.node = result state.node = result
state.db = result.db state.db = result.db
let let head = result.blockPool.get(result.db.getHeadBlock().get())
head = result.blockPool.get(result.db.getHeadBlock().get())
result.state = result.blockPool.loadTailState() result.state = result.blockPool.loadTailState()
result.blockPool.updateState(result.state, head.get().refs) result.blockPool.updateState(result.state, head.get().refs)
writeFile(string(conf.dataDir) / "beacon_node.address", let addressFile = string(conf.dataDir) / "beacon_node.address"
$result.network.listeningAddress) result.network.saveConnectionAddressFile(addressFile)
proc connectToNetwork(node: BeaconNode) {.async.} = proc connectToNetwork(node: BeaconNode) {.async.} =
var bootstrapNodes = newSeq[ENode]() var bootstrapNodes = newSeq[BootstrapAddr]()
for node in node.config.bootstrapNodes: for node in node.config.bootstrapNodes:
bootstrapNodes.add initENode(node) bootstrapNodes.add BootstrapAddr.init(node)
let bootstrapFile = string node.config.bootstrapNodesFile let bootstrapFile = string node.config.bootstrapNodesFile
if bootstrapFile.len > 0: if bootstrapFile.len > 0:
for ln in lines(bootstrapFile): for ln in lines(bootstrapFile):
bootstrapNodes.add initENode(string ln) bootstrapNodes.add BootstrapAddr.init(string ln)
if bootstrapNodes.len > 0: if bootstrapNodes.len > 0:
info "Connecting to bootstrap nodes", bootstrapNodes info "Connecting to bootstrap nodes", bootstrapNodes
else: else:
info "Waiting for connections" info "Waiting for connections"
await node.network.connectToNetwork(bootstrapNodes) await node.network.connectToNetwork(bootstrapNodes)
proc sync*(node: BeaconNode): Future[bool] {.async.} = proc sync*(node: BeaconNode): Future[bool] {.async.} =
@ -598,13 +578,13 @@ proc onBeaconBlock(node: BeaconNode, blck: BeaconBlock) =
discard # node.onAttestation(attestation) discard # node.onAttestation(attestation)
proc run*(node: BeaconNode) = proc run*(node: BeaconNode) =
node.network.subscribe(topicBeaconBlocks) do (blck: BeaconBlock): waitFor node.network.subscribe(topicBeaconBlocks) do (blck: BeaconBlock):
node.onBeaconBlock(blck) node.onBeaconBlock(blck)
node.network.subscribe(topicAttestations) do (attestation: Attestation): waitFor node.network.subscribe(topicAttestations) do (attestation: Attestation):
node.onAttestation(attestation) node.onAttestation(attestation)
node.network.subscribe(topicfetchBlocks) do (roots: seq[Eth2Digest]): waitFor node.network.subscribe(topicfetchBlocks) do (roots: seq[Eth2Digest]):
node.onFetchBlocks(roots) node.onFetchBlocks(roots)
let nowSlot = node.state.data.getSlotFromTime() let nowSlot = node.state.data.getSlotFromTime()
@ -637,7 +617,7 @@ when isMainModule:
waitFor synchronizeClock() waitFor synchronizeClock()
createPidFile(config.dataDir.string / "beacon_node.pid") createPidFile(config.dataDir.string / "beacon_node.pid")
var node = BeaconNode.init config var node = waitFor BeaconNode.init(config)
dynamicLogScope(node = node.config.tcpPort - 50000): dynamicLogScope(node = node.config.tcpPort - 50000):
# TODO: while it's nice to cheat by waiting for connections here, we # TODO: while it's nice to cheat by waiting for connections here, we

View File

@ -0,0 +1,85 @@
const
useDEVP2P = not defined(withLibP2P)
import
options, chronos, version
const
clientId = "Nimbus beacon node v" & versionAsStr
when useDEVP2P:
import
eth/[rlp, p2p, keys], gossipsub_protocol
export
p2p, rlp, gossipsub_protocol
type
Eth2Node* = EthereumNode
BootstrapAddr* = ENode
template libp2pProtocol*(name, version: string) {.pragma.}
proc createEth2Node*(tcpPort, udpPort: Port): Future[Eth2Node] {.async.} =
let
keys = newKeyPair()
address = Address(ip: parseIpAddress("127.0.0.1"),
tcpPort: tcpPort,
udpPort: udpPort)
newEthereumNode(keys, address, 0,
nil, clientId, minPeers = 1)
proc saveConnectionAddressFile*(node: Eth2Node, filename: string) =
writeFile(filename, $node.listeningAddress)
proc init*(T: type BootstrapAddr, str: string): T =
initENode(str)
else:
import
libp2p/daemon/daemonapi, json_serialization, chronicles,
libp2p_backend
export
libp2p_backend
type
BootstrapAddr* = PeerInfo
proc writeValue*(writer: var JsonWriter, value: PeerID) {.inline.} =
writer.writeValue value.pretty
proc readValue*(reader: var JsonReader, value: var PeerID) {.inline.} =
value = PeerID.init reader.readValue(string)
proc writeValue*(writer: var JsonWriter, value: MultiAddress) {.inline.} =
writer.writeValue $value
proc readValue*(reader: var JsonReader, value: var MultiAddress) {.inline.} =
value = MultiAddress.init reader.readValue(string)
proc init*(T: type BootstrapAddr, str: string): T =
Json.decode(str, PeerInfo)
proc createEth2Node*(tcpPort, udpPort: Port): Future[Eth2Node] {.async.} =
var node = new Eth2Node
await node.init()
return node
proc connectToNetwork*(node: Eth2Node, bootstrapNodes: seq[PeerInfo]) {.async.} =
# TODO: perhaps we should do these in parallel
for bootstrapNode in bootstrapNodes:
try:
await node.daemon.connect(bootstrapNode.peer, bootstrapNode.addresses)
await node.getPeer(bootstrapNode.peer).performProtocolHandshakes()
except PeerDisconnected:
error "Failed to connect to bootstrap node", node = bootstrapNode
proc saveConnectionAddressFile*(node: Eth2Node, filename: string) =
let id = waitFor node.daemon.identity()
Json.saveFile(filename, id, pretty = false)
proc loadConnectionAddressFile*(filename: string): PeerInfo =
Json.loadFile(filename, PeerInfo)

View File

@ -5,7 +5,7 @@ import
spec/[datatypes, crypto] spec/[datatypes, crypto]
type type
TopicMsgHandler = proc(msg: string): Future[void] TopicMsgHandler = proc (msg: string)
GossipSubPeer* = ref object GossipSubPeer* = ref object
sentMessages: HashSet[string] sentMessages: HashSet[string]
@ -58,16 +58,7 @@ p2pProtocol GossipSub(version = 1,
{.gcsafe.}: {.gcsafe.}:
let handler = peer.networkState.topicSubscribers.getOrDefault(topic) let handler = peer.networkState.topicSubscribers.getOrDefault(topic)
if handler != nil: if handler != nil:
await handler(msg) handler(msg)
proc subscribeImpl(node: EthereumNode,
topic: string,
subscriber: TopicMsgHandler) =
var gossipNet = node.protocolState(GossipSub)
gossipNet.topicSubscribers[topic] = subscriber
for peer in node.peers(GossipSub):
discard peer.subscribeFor(topic)
proc broadcastImpl(node: EthereumNode, topic: string, msg: string): seq[Future[void]] {.gcsafe.} = proc broadcastImpl(node: EthereumNode, topic: string, msg: string): seq[Future[void]] {.gcsafe.} =
var randBytes: array[10, byte]; var randBytes: array[10, byte];
@ -81,14 +72,15 @@ proc broadcastImpl(node: EthereumNode, topic: string, msg: string): seq[Future[v
if topic in peer.state(GossipSub).subscribedFor: if topic in peer.state(GossipSub).subscribedFor:
result.add peer.emit(topic, msgId, msg) result.add peer.emit(topic, msgId, msg)
proc makeMessageHandler[MsgType](userHandler: proc(msg: MsgType): Future[void]): TopicMsgHandler = proc subscribe*[MsgType](node: EthereumNode,
result = proc (msg: string): Future[void] = topic: string,
userHandler: proc(msg: MsgType)) {.async.}=
var gossipNet = node.protocolState(GossipSub)
gossipNet.topicSubscribers[topic] = proc (msg: string) =
userHandler Json.decode(msg, MsgType) userHandler Json.decode(msg, MsgType)
macro subscribe*(node: EthereumNode, topic: string, handler: untyped): untyped = for peer in node.peers(GossipSub):
handler.addPragma ident"async" discard peer.subscribeFor(topic)
result = newCall(bindSym"subscribeImpl",
node, topic, newCall(bindSym"makeMessageHandler", handler))
proc broadcast*(node: EthereumNode, topic: string, msg: auto) {.async.} = proc broadcast*(node: EthereumNode, topic: string, msg: auto) {.async.} =
await all(node.broadcastImpl(topic, Json.encode(msg))) await all(node.broadcastImpl(topic, Json.encode(msg)))

View File

@ -0,0 +1,768 @@
import
options, macros, algorithm,
std_shims/[macros_shim, tables_shims], chronos, chronicles,
libp2p/daemon/daemonapi, faststreams/output_stream, serialization,
ssz
export
daemonapi
type
Eth2Node* = ref object of RootObj
daemon*: DaemonAPI
peers*: Table[PeerID, Peer]
protocolStates*: seq[RootRef]
Peer* = ref object
network: Eth2Node
id: PeerID
connectionState: ConnectionState
awaitedMessages: Table[CompressedMsgId, FutureBase]
protocolStates*: seq[RootRef]
EthereumNode = Eth2Node # This alias is needed for state_helpers below
ProtocolInfoObj* = object
name*: string
messages*: seq[MessageInfo]
index*: int # the position of the protocol in the
# ordered list of supported protocols
# Private fields:
peerStateInitializer*: PeerStateInitializer
networkStateInitializer*: NetworkStateInitializer
handshake*: HandshakeStep
disconnectHandler*: DisconnectionHandler
ProtocolInfo* = ptr ProtocolInfoObj
MessageInfo* = object
name*: string
# Private fields:
thunk*: MessageHandler
libp2pProtocol: string
printer*: MessageContentPrinter
nextMsgResolver*: NextMsgResolver
CompressedMsgId = tuple
protocolIndex, msgId: int
MessageKind* = enum
msgNotification,
msgRequest,
msgResponse
PeerStateInitializer* = proc(peer: Peer): RootRef {.gcsafe.}
NetworkStateInitializer* = proc(network: EthereumNode): RootRef {.gcsafe.}
HandshakeStep* = proc(peer: Peer, handshakeStream: P2PStream): Future[void] {.gcsafe.}
DisconnectionHandler* = proc(peer: Peer): Future[void] {.gcsafe.}
MessageHandler* = proc(daemon: DaemonAPI, stream: P2PStream): Future[void] {.gcsafe.}
MessageContentPrinter* = proc(msg: pointer): string {.gcsafe.}
NextMsgResolver* = proc(msgData: SszReader, future: FutureBase) {.gcsafe.}
ConnectionState* = enum
None,
Connecting,
Connected,
Disconnecting,
Disconnected
UntypedResponse = object
peer*: Peer
stream*: P2PStream
Response*[MsgType] = distinct UntypedResponse
Bytes = seq[byte]
DisconnectionReason* = enum
BreachOfProtocol
PeerDisconnected* = object of CatchableError
reason*: DisconnectionReason
const
defaultIncomingReqTimeout = 5000
defaultOutgoingReqTimeout = 10000
var
gProtocols: seq[ProtocolInfo]
# The variables above are immutable RTTI information. We need to tell
# Nim to not consider them GcSafe violations:
template allProtocols: auto = {.gcsafe.}: gProtocols
proc disconnect*(peer: Peer) {.async.} =
if peer.connectionState notin {Disconnecting, Disconnected}:
peer.connectionState = Disconnecting
await peer.network.daemon.disconnect(peer.id)
peer.connectionState = Disconnected
peer.network.peers.del(peer.id)
template raisePeerDisconnected(msg: string, r: DisconnectionReason) =
var e = newException(PeerDisconnected, msg)
e.reason = r
raise e
proc disconnectAndRaise(peer: Peer,
reason: DisconnectionReason,
msg: string) {.async.} =
let r = reason
await peer.disconnect()
raisePeerDisconnected(msg, reason)
proc init*(node: Eth2Node) {.async.} =
node.daemon = await newDaemonApi({PSGossipSub})
node.daemon.userData = node
init node.peers
newSeq node.protocolStates, allProtocols.len
for proto in allProtocols:
if proto.networkStateInitializer != nil:
node.protocolStates[proto.index] = proto.networkStateInitializer(node)
for msg in proto.messages:
if msg.libp2pProtocol.len > 0:
await node.daemon.addHandler(@[msg.libp2pProtocol], msg.thunk)
include eth/p2p/p2p_backends_helpers
include eth/p2p/p2p_tracing
import typetraits
proc readMsg(stream: P2PStream, MsgType: type,
timeout = 10000): Future[Option[MsgType]] {.async.} =
var timeout = sleepAsync timeout
var sizePrefix: uint32
var readSizePrefix = stream.transp.readExactly(addr sizePrefix, sizeof(sizePrefix))
await readSizePrefix or timeout
if not readSizePrefix.finished: return
debug "EXPECTING MSG", msg = MsgType.name, size = sizePrefix.int
var msgBytes = newSeq[byte](sizePrefix.int + sizeof(sizePrefix))
copyMem(addr msgBytes[0], addr sizePrefix, sizeof(sizePrefix))
var readBody = stream.transp.readExactly(addr msgBytes[sizeof(sizePrefix)], sizePrefix.int)
await readBody or timeout
if not readBody.finished: return
let decoded = SSZ.decode(msgBytes, MsgType)
try:
return some(decoded)
except SerializationError:
return
proc sendMsg(peer: Peer, protocolId: string, requestBytes: Bytes) {.async} =
var stream = await peer.network.daemon.openStream(peer.id, @[protocolId])
# TODO how does openStream fail? Set a timeout here and handle it
let sent = await stream.transp.write(requestBytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
proc sendBytes(stream: P2PStream, bytes: Bytes) {.async.} =
let sent = await stream.transp.write(bytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
proc makeEth2Request(peer: Peer, protocolId: string, requestBytes: Bytes,
ResponseMsg: type,
timeout = 10000): Future[Option[ResponseMsg]] {.async.} =
var stream = await peer.network.daemon.openStream(peer.id, @[protocolId])
# TODO how does openStream fail? Set a timeout here and handle it
let sent = await stream.transp.write(requestBytes)
# TODO: Should I check that `sent` is equal to the desired number of bytes
return await stream.readMsg(ResponseMsg, timeout)
proc handshakeImpl(peer: Peer,
handshakeSendFut: Future[void],
handshakeStream: P2PStream,
timeout: int,
HandshakeType: type): Future[HandshakeType] {.async.} =
await handshakeSendFut
let response = await handshakeStream.readMsg(HandshakeType, timeout)
if response.isSome:
return response.get
else:
await peer.disconnectAndRaise(BreachOfProtocol, "Handshake not completed in time")
proc p2pStreamName(MsgType: type): string =
mixin msgProtocol, protocolInfo, msgId
MsgType.msgProtocol.protocolInfo.messages[MsgType.msgId].libp2pProtocol
macro handshake*(peer: Peer, timeout = 10000, sendCall: untyped): untyped =
let
msgName = $sendCall[0]
msgType = newDotExpr(ident"CurrentProtocol", ident(msgName))
handshakeStream = ident "handshakeStream"
handshakeImpl = bindSym "handshakeImpl"
await = ident "await"
sendCall.insert(1, handshakeStream)
result = quote do:
proc payload(peer: Peer, `handshakeStream`: P2PStream): Future[`msgType`] {.async.} =
var `handshakeStream` = `handshakeStream`
if `handshakeStream` == nil:
`handshakeStream` = `await` openStream(peer.network.daemon,
peer.id,
@[p2pStreamName(`msgType`)],
`timeout`)
return `await` `handshakeImpl`(peer, `sendCall`, `handshakeStream`, `timeout`, `msgType`)
payload(`peer`, `handshakeStream`)
proc getCompressedMsgId(MsgType: type): CompressedMsgId =
mixin msgProtocol, protocolInfo, msgId
(protocolIndex: MsgType.msgProtocol.protocolInfo.index, msgId: MsgType.msgId)
proc nextMsg*(peer: Peer, MsgType: type): Future[MsgType] =
## This procs awaits a specific P2P message.
## Any messages received while waiting will be dispatched to their
## respective handlers. The designated message handler will also run
## to completion before the future returned by `nextMsg` is resolved.
mixin msgProtocol, protocolInfo, msgId
let awaitedMsgId = getCompressedMsgId(MsgType)
let f = getOrDefault(peer.awaitedMessages, awaitedMsgId)
if not f.isNil:
return Future[MsgType](f)
newFuture result
peer.awaitedMessages[awaitedMsgId] = result
proc resolveNextMsgFutures(peer: Peer, msg: auto) =
type MsgType = type(msg)
let msgId = getCompressedMsgId(MsgType)
let future = peer.awaitedMessages.getOrDefault(msgId)
if future != nil:
Future[MsgType](future).complete msg
proc init*(T: type Peer, network: Eth2Node, id: PeerID): Peer =
new result
result.id = id
result.network = network
result.awaitedMessages = initTable[CompressedMsgId, FutureBase]()
result.connectionState = Connected
newSeq result.protocolStates, allProtocols.len
for i in 0 ..< allProtocols.len:
let proto = allProtocols[i]
if proto.peerStateInitializer != nil:
result.protocolStates[i] = proto.peerStateInitializer(result)
proc performProtocolHandshakes*(peer: Peer) {.async.} =
var subProtocolsHandshakes = newSeqOfCap[Future[void]](allProtocols.len)
for protocol in allProtocols:
if protocol.handshake != nil:
subProtocolsHandshakes.add((protocol.handshake)(peer, nil))
await all(subProtocolsHandshakes)
proc getPeer*(node: Eth2Node, peerId: PeerID): Peer =
result = node.peers.getOrDefault(peerId)
if result == nil:
result = Peer.init(node, peerId)
node.peers[peerId] = result
proc peerFromStream(daemon: DaemonAPI, stream: P2PStream): Peer =
Eth2Node(daemon.userData).getPeer(stream.peer)
template getRecipient(peer: Peer): Peer =
peer
# TODO: this should be removed eventually
template getRecipient(stream: P2PStream): P2PStream =
stream
template getRecipient(response: Response): Peer =
UntypedResponse(response).peer
proc messagePrinter[MsgType](msg: pointer): string {.gcsafe.} =
result = ""
# TODO: uncommenting the line below increases the compile-time
# tremendously (for reasons not yet known)
# result = $(cast[ptr MsgType](msg)[])
proc initProtocol(name: string,
peerInit: PeerStateInitializer,
networkInit: NetworkStateInitializer): ProtocolInfoObj =
result.name = name
result.messages = @[]
result.peerStateInitializer = peerInit
result.networkStateInitializer = networkInit
proc setEventHandlers(p: ProtocolInfo,
handshake: HandshakeStep,
disconnectHandler: DisconnectionHandler) =
p.handshake = handshake
p.disconnectHandler = disconnectHandler
proc registerMsg(protocol: ProtocolInfo,
name: string,
thunk: MessageHandler,
libp2pProtocol: string,
printer: MessageContentPrinter) =
protocol.messages.add MessageInfo(name: name,
thunk: thunk,
libp2pProtocol: libp2pProtocol,
printer: printer)
proc registerProtocol(protocol: ProtocolInfo) =
# TODO: This can be done at compile-time in the future
let pos = lowerBound(gProtocols, protocol)
gProtocols.insert(protocol, pos)
for i in 0 ..< gProtocols.len:
gProtocols[i].index = i
template libp2pProtocol*(name, version: string) {.pragma.}
proc getRequestProtoName(fn: NimNode): NimNode =
# `getCustomPragmaVal` doesn't work yet on regular nnkProcDef nodes
# (TODO: file as an issue)
let pragmas = fn.pragma
if pragmas.kind == nnkPragma and pragmas.len > 0:
for pragma in pragmas:
if pragma.len > 0 and $pragma[0] == "libp2pProtocol":
return pragma[1]
error "All stream opening procs must have the 'libp2pProtocol' pragma specified.", fn
macro p2pProtocolImpl(name: static[string],
version: static[uint],
body: untyped,
timeout: static[int] = defaultOutgoingReqTimeout,
shortName: static[string] = "",
peerState = type(nil),
networkState = type(nil)): untyped =
## The macro used to defined P2P sub-protocols. See README.
var
# XXX: deal with a Nim bug causing the macro params to be
# zero when they are captured by a closure:
defaultTimeout = timeout
protoName = name
nextId = -1
protoNameIdent = ident(protoName)
outTypes = newNimNode(nnkStmtList)
outSendProcs = newNimNode(nnkStmtList)
outRecvProcs = newNimNode(nnkStmtList)
outProcRegistrations = newNimNode(nnkStmtList)
response = ident"response"
name_openStream = newTree(nnkPostfix, ident("*"), ident"openStream")
outputStream = ident"outputStream"
currentProtocolSym = ident"CurrentProtocol"
protocol = ident(protoName & "Protocol")
peerState = verifyStateType peerState.getType
networkState = verifyStateType networkState.getType
handshake = newNilLit()
disconnectHandler = newNilLit()
Format = ident"SSZ"
Option = bindSym "Option"
UntypedResponse = bindSym "UntypedResponse"
Response = bindSym "Response"
DaemonAPI = bindSym "DaemonAPI"
P2PStream = ident "P2PStream"
# XXX: Binding the int type causes instantiation failure for some reason
# Int = bindSym "int"
Int = ident "int"
Void = ident "void"
Peer = bindSym "Peer"
writeField = bindSym "writeField"
createNetworkState = bindSym "createNetworkState"
createPeerState = bindSym "createPeerState"
getOutput = bindSym "getOutput"
messagePrinter = bindSym "messagePrinter"
initProtocol = bindSym "initProtocol"
getRecipient = bindSym "getRecipient"
peerFromStream = bindSym "peerFromStream"
makeEth2Request = bindSym "makeEth2Request"
sendMsg = bindSym "sendMsg"
sendBytes = bindSym "sendBytes"
getState = bindSym "getState"
getNetworkState = bindSym "getNetworkState"
resolveNextMsgFutures = bindSym "resolveNextMsgFutures"
proc augmentUserHandler(userHandlerProc: NimNode,
msgKind = msgNotification,
extraDefinitions: NimNode = nil) =
## Turns a regular proc definition into an async proc and adds
## the helpers for accessing the peer and network protocol states.
userHandlerProc.addPragma ident"gcsafe"
userHandlerProc.addPragma ident"async"
# We allow the user handler to use `openarray` params, but we turn
# those into sequences to make the `async` pragma happy.
for i in 1 ..< userHandlerProc.params.len:
var param = userHandlerProc.params[i]
param[^2] = chooseFieldType(param[^2])
var userHandlerDefinitions = newStmtList()
userHandlerDefinitions.add quote do:
type `currentProtocolSym` = `protoNameIdent`
if extraDefinitions != nil:
userHandlerDefinitions.add extraDefinitions
# Define local accessors for the peer and the network protocol states
# inside each user message handler proc (e.g. peer.state.foo = bar)
if peerState != nil:
userHandlerDefinitions.add quote do:
template state(p: `Peer`): `peerState` =
cast[`peerState`](`getState`(p, `protocol`))
if networkState != nil:
userHandlerDefinitions.add quote do:
template networkState(p: `Peer`): `networkState` =
cast[`networkState`](`getNetworkState`(p.network, `protocol`))
userHandlerProc.body.insert 0, userHandlerDefinitions
proc liftEventHandler(doBlock: NimNode, handlerName: string): NimNode =
## Turns a "named" do block to a regular async proc
## (e.g. onPeerConnected do ...)
result = newTree(nnkProcDef)
doBlock.copyChildrenTo(result)
result.name = genSym(nskProc, protoName & handlerName)
augmentUserHandler result
outRecvProcs.add result
proc addMsgHandler(n: NimNode, msgKind = msgNotification,
responseRecord: NimNode = nil): NimNode =
if n[0].kind == nnkPostfix:
macros.error("p2pProcotol procs are public by default. " &
"Please remove the postfix `*`.", n)
inc nextId
let
msgIdent = n.name
msgName = $n.name
var
userPragmas = n.pragma
# variables used in the sending procs
msgRecipient = ident"msgRecipient"
sendTo = ident"sendTo"
writer = ident"writer"
recordStartMemo = ident"recordStartMemo"
reqTimeout: NimNode
appendParams = newNimNode(nnkStmtList)
paramsToWrite = newSeq[NimNode](0)
msgId = newLit(nextId)
# variables used in the receiving procs
receivedMsg = ident"msg"
daemon = ident "daemon"
stream = ident "stream"
await = ident "await"
peerIdent = ident "peer"
tracing = newNimNode(nnkStmtList)
# nodes to store the user-supplied message handling proc if present
userHandlerProc: NimNode = nil
userHandlerCall: NimNode = nil
awaitUserHandler = newStmtList()
# a record type associated with the message
msgRecord = newIdentNode(msgName & "Obj")
msgRecordFields = newTree(nnkRecList)
msgRecordBody = newTree(nnkObjectTy,
newEmptyNode(),
newEmptyNode(),
msgRecordFields)
result = msgRecord
if msgKind == msgRequest:
# If the request proc has a default timeout specified, remove it from
# the signature for now so we can generate the `thunk` proc without it.
# The parameter will be added back later only for to the sender proc.
# When the timeout is not specified, we use a default one.
reqTimeout = popTimeoutParam(n)
if reqTimeout == nil:
reqTimeout = newTree(nnkIdentDefs,
ident"timeout",
Int, newLit(defaultTimeout))
if n.body.kind != nnkEmpty:
# Implement the receiving thunk proc that deserialzed the
# message parameters and calls the user proc:
userHandlerProc = n.copyNimTree
userHandlerProc.name = genSym(nskProc, msgName)
# This is the call to the user supplied handler.
# Here we add only the initial params, the rest will be added later.
userHandlerCall = newCall(userHandlerProc.name)
# When there is a user handler, it must be awaited in the thunk proc.
# Above, by default `awaitUserHandler` is set to a no-op statement list.
awaitUserHandler = newCall(await, userHandlerCall)
var extraDefs: NimNode
if msgKind == msgRequest:
# Request procs need an extra param - the stream where the response
# should be written:
userHandlerProc.params.insert(1, newIdentDefs(stream, P2PStream))
userHandlerCall.add stream
let peer = userHandlerProc.params[2][0]
extraDefs = quote do:
# Jump through some hoops to work aroung
# https://github.com/nim-lang/Nim/issues/6248
let `response` = `Response`[`responseRecord`](
`UntypedResponse`(peer: `peer`, stream: `stream`))
# Resolve the Eth2Peer from the LibP2P data received in the thunk
userHandlerCall.add peerIdent
augmentUserHandler userHandlerProc, msgKind, extraDefs
outRecvProcs.add userHandlerProc
elif msgName == "status":
awaitUserHandler = quote do:
`await` `handshake`(`peerIdent`, `stream`)
for param, paramType in n.typedParams(skip = 1):
paramsToWrite.add param
# Each message has a corresponding record type.
# Here, we create its fields one by one:
msgRecordFields.add newTree(nnkIdentDefs,
newTree(nnkPostfix, ident("*"), param), # The fields are public
chooseFieldType(paramType), # some types such as openarray
# are automatically remapped
newEmptyNode())
# If there is user message handler, we'll place a call to it by
# unpacking the fields of the received message:
if userHandlerCall != nil:
userHandlerCall.add quote do: get(`receivedMsg`).`param` # newDotExpr(newCall("get", receivedMsg), param)
when tracingEnabled:
tracing = quote do:
logReceivedMsg(`stream`.peer, `receivedMsg`.get)
let requestDataTimeout = newLit(defaultIncomingReqTimeout)
let thunkName = ident(msgName & "_thunk")
var thunkProc = quote do:
proc `thunkName`(`daemon`: `DaemonAPI`, `stream`: `P2PStream`) {.async, gcsafe.} =
var `receivedMsg` = `await` readMsg(`stream`, `msgRecord`, `requestDataTimeout`)
if `receivedMsg`.isNone:
# TODO: This peer is misbehaving, perhaps we should penalize him somehow
return
let `peerIdent` = `peerFromStream`(`daemon`, `stream`)
`tracing`
`awaitUserHandler`
`resolveNextMsgFutures`(`peerIdent`, get(`receivedMsg`))
for p in userPragmas:
thunkProc.addPragma p
outRecvProcs.add thunkProc
outTypes.add quote do:
# This is a type featuring a single field for each message param:
type `msgRecord`* = `msgRecordBody`
# Add a helper template for accessing the message type:
# e.g. p2p.hello:
template `msgIdent`*(T: type `protoNameIdent`): type = `msgRecord`
template msgId*(T: type `msgRecord`): int = `msgId`
template msgProtocol*(T: type `msgRecord`): type = `protoNameIdent`
var msgSendProc = n
let msgSendProcName = n.name
outSendProcs.add msgSendProc
# TODO: check that the first param has the correct type
msgSendProc.params[1][0] = sendTo
if nextId == 0: msgSendProc.params[1][1] = P2PStream
msgSendProc.addPragma ident"gcsafe"
# Add a timeout parameter for all request procs
case msgKind
of msgRequest:
msgSendProc.params.add reqTimeout
of msgResponse:
# A response proc must be called with a response object that originates
# from a certain request. Here we change the Peer parameter at position
# 1 to the correct strongly-typed ResponseType. The incoming procs still
# gets the normal Peer paramter.
let ResponseType = newTree(nnkBracketExpr, Response, msgRecord)
msgSendProc.params[1][1] = ResponseType
outSendProcs.add quote do:
template send*(r: `ResponseType`, args: varargs[untyped]): auto =
`msgSendProcName`(r, args)
else: discard
# We change the return type of the sending proc to a Future.
# If this is a request proc, the future will return the response record.
let rt = case msgKind
of msgRequest: newTree(nnkBracketExpr, Option, responseRecord)
of msgResponse, msgNotification: Void
msgSendProc.params[0] = newTree(nnkBracketExpr, ident("Future"), rt)
let msgBytes = ident"msgBytes"
# Make the send proc public
msgSendProc.name = newTree(nnkPostfix, ident("*"), msgSendProc.name)
let initWriter = quote do:
var `outputStream` = init OutputStream
var `writer` = init(WriterType(`Format`), `outputStream`)
var `recordStartMemo` = beginRecord(`writer`, `msgRecord`)
for param in paramsToWrite:
appendParams.add newCall(writeField, writer, newLit($param), param)
when tracingEnabled:
appendParams.add logSentMsgFields(msgRecipient, protocol, msgName, paramsToWrite)
let finalizeRequest = quote do:
endRecord(`writer`, `recordStartMemo`)
let `msgBytes` = `getOutput`(`outputStream`)
var msgProto = newLit("")
let sendCall =
if msgKind != msgResponse:
msgProto = getRequestProtoName(n)
when false:
var openStreamProc = n.copyNimTree
var openStreamProc.name = name_openStream
openStreamProc.params.insert 1, newIdentDefs(ident"T", msgRecord)
if msgKind == msgRequest:
let timeout = reqTimeout[0]
quote: `makeEth2Request`(`msgRecipient`, `msgProto`, `msgBytes`,
`responseRecord`, `timeout`)
elif nextId == 0:
quote: `sendBytes`(`sendTo`, `msgBytes`)
else:
quote: `sendMsg`(`msgRecipient`, `msgProto`, `msgBytes`)
else:
quote: `sendBytes`(`UntypedResponse`(`sendTo`).stream, `msgBytes`)
msgSendProc.body = quote do:
let `msgRecipient` = `getRecipient`(`sendTo`)
`initWriter`
`appendParams`
`finalizeRequest`
return `sendCall`
outProcRegistrations.add(
newCall(bindSym("registerMsg"),
protocol,
newLit(msgName),
thunkName,
msgProto,
newTree(nnkBracketExpr, messagePrinter, msgRecord)))
outTypes.add quote do:
# Create a type acting as a pseudo-object representing the protocol
# (e.g. p2p)
type `protoNameIdent`* = object
if peerState != nil:
outTypes.add quote do:
template State*(P: type `protoNameIdent`): type = `peerState`
if networkState != nil:
outTypes.add quote do:
template NetworkState*(P: type `protoNameIdent`): type = `networkState`
for n in body:
case n.kind
of {nnkCall, nnkCommand}:
if eqIdent(n[0], "nextID"):
discard
elif eqIdent(n[0], "requestResponse"):
# `requestResponse` can be given a block of 2 or more procs.
# The last one is considered to be a response message, while
# all preceeding ones are requests triggering the response.
# The system makes sure to automatically insert a hidden `reqId`
# parameter used to discriminate the individual messages.
block processReqResp:
if n.len == 2 and n[1].kind == nnkStmtList:
var procs = newSeq[NimNode](0)
for def in n[1]:
if def.kind == nnkProcDef:
procs.add(def)
if procs.len > 1:
let responseRecord = addMsgHandler(procs[^1],
msgKind = msgResponse)
for i in 0 .. procs.len - 2:
discard addMsgHandler(procs[i],
msgKind = msgRequest,
responseRecord = responseRecord)
# we got all the way to here, so everything is fine.
# break the block so it doesn't reach the error call below
break processReqResp
macros.error("requestResponse expects a block with at least two proc definitions")
elif eqIdent(n[0], "onPeerConnected"):
var handshakeProc = liftEventHandler(n[1], "Handshake")
handshakeProc.params.add newIdentDefs(ident"handshakeStream", P2PStream)
handshake = handshakeProc.name
elif eqIdent(n[0], "onPeerDisconnected"):
disconnectHandler = liftEventHandler(n[1], "PeerDisconnect").name
else:
macros.error(repr(n) & " is not a recognized call in P2P protocol definitions", n)
of nnkProcDef:
discard addMsgHandler(n)
of nnkCommentStmt:
discard
else:
macros.error("illegal syntax in a P2P protocol definition", n)
let peerInit = if peerState == nil: newNilLit()
else: newTree(nnkBracketExpr, createPeerState, peerState)
let netInit = if networkState == nil: newNilLit()
else: newTree(nnkBracketExpr, createNetworkState, networkState)
result = newNimNode(nnkStmtList)
result.add outTypes
result.add quote do:
# One global variable per protocol holds the protocol run-time data
var p = `initProtocol`(`protoName`, `peerInit`, `netInit`)
var `protocol` = addr p
# The protocol run-time data is available as a pseudo-field
# (e.g. `p2p.protocolInfo`)
template protocolInfo*(P: type `protoNameIdent`): ProtocolInfo = `protocol`
result.add outSendProcs, outRecvProcs, outProcRegistrations
result.add quote do:
setEventHandlers(`protocol`, `handshake`, `disconnectHandler`)
result.add newCall(bindSym("registerProtocol"), protocol)
when defined(debugP2pProtocol) or defined(debugMacros):
echo repr(result)
macro p2pProtocol*(protocolOptions: untyped, body: untyped): untyped =
let protoName = $(protocolOptions[0])
result = protocolOptions
result[0] = bindSym"p2pProtocolImpl"
result.add(newTree(nnkExprEqExpr,
ident("name"),
newLit(protoName)))
result.add(newTree(nnkExprEqExpr,
ident("body"),
body))
proc makeMessageHandler[MsgType](msgHandler: proc(msg: MsgType)): P2PPubSubCallback =
result = proc(api: DaemonAPI, ticket: PubsubTicket, msg: PubSubMessage): Future[bool] {.async.} =
msgHandler SSZ.decode(msg.data, MsgType)
return true
proc subscribe*[MsgType](node: EthereumNode,
topic: string,
msgHandler: proc(msg: MsgType)) {.async.} =
discard await node.daemon.pubsubSubscribe(topic, makeMessageHandler(msgHandler))
proc broadcast*(node: Eth2Node, topic: string, msg: auto) {.async.} =
await node.daemon.pubsubPublish(topic, SSZ.encode(msg))

View File

@ -10,11 +10,36 @@
import import
endians, typetraits, options, algorithm, endians, typetraits, options, algorithm,
eth/common, nimcrypto/keccak, faststreams/input_stream, serialization, eth/common, nimcrypto/keccak,
./spec/[crypto, datatypes, digest] ./spec/[crypto, datatypes, digest]
# ################### Helper functions ################################### # ################### Helper functions ###################################
export
serialization
type
SszReader* = object
stream: ByteStreamVar
SszWriter* = object
stream: OutputStreamVar
SszError* = object of SerializationError
CorruptedDataError* = object of SszError
RecordWritingMemo = object
initialStreamPos: int
sizePrefixCursor: DelayedWriteCursor
serializationFormat SSZ,
Reader = SszReader,
Writer = SszWriter,
PreferedOutput = seq[byte]
proc init*(T: type SszReader, stream: ByteStreamVar): T =
result.stream = stream
# toBytesSSZ convert simple fixed-length types to their SSZ wire representation # toBytesSSZ convert simple fixed-length types to their SSZ wire representation
func toBytesSSZ(x: SomeInteger): array[sizeof(x), byte] = func toBytesSSZ(x: SomeInteger): array[sizeof(x), byte] =
## Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``) ## Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``)
@ -44,7 +69,7 @@ func toBytesSSZ(x: Eth2Digest): array[32, byte] = x.data
func toBytesSSZ(x: ValidatorPubKey|ValidatorSig): auto = x.getBytes() func toBytesSSZ(x: ValidatorPubKey|ValidatorSig): auto = x.getBytes()
type type
TrivialTypes = TrivialType =
# Types that serialize down to a fixed-length array - most importantly, # Types that serialize down to a fixed-length array - most importantly,
# these values don't carry a length prefix in the final encoding. toBytesSSZ # these values don't carry a length prefix in the final encoding. toBytesSSZ
# provides the actual nim-type-to-bytes conversion. # provides the actual nim-type-to-bytes conversion.
@ -55,7 +80,7 @@ type
SomeInteger | EthAddress | Eth2Digest | ValidatorPubKey | ValidatorSig | SomeInteger | EthAddress | Eth2Digest | ValidatorPubKey | ValidatorSig |
bool bool
func sszLen(v: TrivialTypes): int = toBytesSSZ(v).len func sszLen(v: TrivialType): int = toBytesSSZ(v).len
func sszLen(v: ValidatorIndex): int = toBytesSSZ(v).len func sszLen(v: ValidatorIndex): int = toBytesSSZ(v).len
func sszLen(v: object | tuple): int = func sszLen(v: object | tuple): int =
@ -68,18 +93,18 @@ func sszLen(v: seq | array): int =
for i in v: for i in v:
result += sszLen(i) result += sszLen(i)
# fromBytesSSZUnsafe copy wire representation to a Nim variable, assuming # fromBytesSSZ copies the wire representation to a Nim variable,
# there's enough data in the buffer # assuming there's enough data in the buffer
func fromBytesSSZUnsafe(T: typedesc[SomeInteger], data: pointer): T = func fromBytesSSZ(T: type SomeInteger, data: openarray[byte]): T =
## Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``) ## Convert directly to bytes the size of the int. (e.g. ``uint16 = 2 bytes``)
## All integers are serialized as **little endian**. ## All integers are serialized as **little endian**.
## TODO: Assumes data points to a sufficiently large buffer ## TODO: Assumes data points to a sufficiently large buffer
doAssert data.len == sizeof(result)
# TODO: any better way to get a suitably aligned buffer in nim??? # TODO: any better way to get a suitably aligned buffer in nim???
# see also: https://github.com/nim-lang/Nim/issues/9206 # see also: https://github.com/nim-lang/Nim/issues/9206
var tmp: uint64 var tmp: uint64
var alignedBuf = cast[ptr byte](tmp.addr) var alignedBuf = cast[ptr byte](tmp.addr)
copyMem(alignedBuf, data, result.sizeof) copyMem(alignedBuf, unsafeAddr data[0], result.sizeof)
when result.sizeof == 8: littleEndian64(result.addr, alignedBuf) when result.sizeof == 8: littleEndian64(result.addr, alignedBuf)
elif result.sizeof == 4: littleEndian32(result.addr, alignedBuf) elif result.sizeof == 4: littleEndian32(result.addr, alignedBuf)
@ -87,143 +112,133 @@ func fromBytesSSZUnsafe(T: typedesc[SomeInteger], data: pointer): T =
elif result.sizeof == 1: copyMem(result.addr, alignedBuf, sizeof(result)) elif result.sizeof == 1: copyMem(result.addr, alignedBuf, sizeof(result))
else: {.fatal: "Unsupported type deserialization: " & $(type(result)).name.} else: {.fatal: "Unsupported type deserialization: " & $(type(result)).name.}
func fromBytesSSZUnsafe(T: typedesc[bool], data: pointer): T = func fromBytesSSZ(T: type bool, data: openarray[byte]): T =
# TODO: spec doesn't say what to do if the value is >1 - we'll use the C # TODO: spec doesn't say what to do if the value is >1 - we'll use the C
# definition for now, but maybe this should be a parse error instead? # definition for now, but maybe this should be a parse error instead?
fromBytesSSZUnsafe(uint8, data) != 0 fromBytesSSZ(uint8, data) != 0
func fromBytesSSZUnsafe(T: typedesc[ValidatorIndex], data: pointer): T = func fromBytesSSZ(T: type ValidatorIndex, data: openarray[byte]): T =
## Integers are all encoded as littleendian and not padded ## Integers are all encoded as littleendian and not padded
doAssert data.len == 3
var tmp: uint32 var tmp: uint32
let p = cast[ptr UncheckedArray[byte]](data) tmp = tmp or uint32(data[0])
tmp = tmp or uint32(p[0]) tmp = tmp or uint32(data[1]) shl 8
tmp = tmp or uint32(p[1]) shl 8 tmp = tmp or uint32(data[2]) shl 16
tmp = tmp or uint32(p[2]) shl 16
result = tmp.ValidatorIndex result = tmp.ValidatorIndex
func fromBytesSSZUnsafe(T: typedesc[EthAddress], data: pointer): T = func fromBytesSSZ(T: type EthAddress, data: openarray[byte]): T =
copyMem(result.addr, data, sizeof(result)) doAssert data.len == sizeof(result)
copyMem(result.addr, unsafeAddr data[0], sizeof(result))
func fromBytesSSZUnsafe(T: typedesc[Eth2Digest], data: pointer): T = func fromBytesSSZ(T: type Eth2Digest, data: openarray[byte]): T =
copyMem(result.data.addr, data, sizeof(result.data)) doAssert data.len == sizeof(result.data)
copyMem(result.data.addr, unsafeAddr data[0], sizeof(result.data))
proc deserialize[T: TrivialTypes]( proc init*(T: type SszWriter, stream: OutputStreamVar): T =
dest: var T, offset: var int, data: openArray[byte]): bool = result.stream = stream
# TODO proc because milagro is problematic
if offset + sszLen(dest) > data.len(): proc writeValue*(w: var SszWriter, obj: auto)
false
# This is an alternative lower-level API useful for RPC
# frameworks that can simulate the serialization of an
# object without constructing an actual instance:
proc beginRecord*(w: var SszWriter, T: type): RecordWritingMemo =
result.initialStreamPos = w.stream.pos
result.sizePrefixCursor = w.stream.delayFixedSizeWrite sizeof(uint32)
template writeField*(w: var SszWriter, name: string, value: auto) =
w.writeValue(value)
proc endRecord*(w: var SszWriter, memo: RecordWritingMemo) =
let finalSize = uint32(w.stream.pos - memo.initialStreamPos - 4)
memo.sizePrefixCursor.endWrite(finalSize.toBytesSSZ)
proc writeValue*(w: var SszWriter, obj: auto) =
# We are not using overloads here, because this leads to
# slightly better error messages when the user provides
# additional overloads for `writeValue`.
mixin writeValue
when obj is ValidatorIndex|TrivialType:
w.stream.append obj.toBytesSSZ
elif obj is enum:
w.stream.append uint64(obj).toBytesSSZ
else: else:
when T is (ValidatorPubKey|ValidatorSig): let memo = w.beginRecord(obj.type)
if dest.init(data[offset..data.len-1]): when obj is seq|array|openarray:
offset += sszLen(dest)
true
else:
false
else:
dest = fromBytesSSZUnsafe(T, data[offset].unsafeAddr)
offset += sszLen(dest)
true
func deserialize(
dest: var ValidatorIndex, offset: var int, data: openArray[byte]): bool =
if offset + sszLen(dest) > data.len():
false
else:
dest = fromBytesSSZUnsafe(ValidatorIndex, data[offset].unsafeAddr)
offset += sszLen(dest)
true
func deserialize[T: enum](dest: var T, offset: var int, data: openArray[byte]): bool =
# TODO er, verify the size here, probably an uint64 but...
var tmp: uint64
if not deserialize(tmp, offset, data):
false
else:
# TODO what to do with out-of-range values?? rejecting means breaking
# forwards compatibility..
dest = cast[T](tmp)
true
proc deserialize[T: not (enum|TrivialTypes|ValidatorIndex)](
dest: var T, offset: var int, data: openArray[byte]): bool =
# Length in bytes, followed by each item
var totalLen: uint32
if not deserialize(totalLen, offset, data): return false
if offset + totalLen.int > data.len(): return false
let itemEnd = offset + totalLen.int
when T is seq:
# Items are of homogenous type, but not necessarily homogenous length,
# cannot pre-allocate item list generically
while offset < itemEnd:
dest.setLen dest.len + 1
if not deserialize(dest[^1], offset, data): return false
elif T is array:
var i = 0
while offset < itemEnd:
if not deserialize(dest[i], offset, data): return false
i += 1
if i > dest.len: return false
else:
for field in dest.fields:
if not deserialize(field, offset, data): return false
if offset != itemEnd: return false
true
func serialize(dest: var seq[byte], src: TrivialTypes) =
dest.add src.toBytesSSZ()
func serialize(dest: var seq[byte], src: ValidatorIndex) =
dest.add src.toBytesSSZ()
func serialize(dest: var seq[byte], x: enum) =
# TODO er, verify the size here, probably an uint64 but...
serialize dest, uint64(x)
func serialize[T: not enum](dest: var seq[byte], src: T) =
let lenPos = dest.len()
# Length is a prefix, so we'll put a dummy 0 here and fill it after
# serializing
dest.add toBytesSSZ(0'u32)
when T is seq|array:
# If you get an error here that looks like: # If you get an error here that looks like:
# type mismatch: got <type range 0..8191(uint64)> # type mismatch: got <type range 0..8191(uint64)>
# you just used an unsigned int for an array index thinking you'd get # you just used an unsigned int for an array index thinking you'd get
# away with it (surprise, surprise: you can't, uints are crippled!) # away with it (surprise, surprise: you can't, uints are crippled!)
# https://github.com/nim-lang/Nim/issues/9984 # https://github.com/nim-lang/Nim/issues/9984
for val in src: for elem in obj:
serialize dest, val w.writeValue elem
else: else:
when defined(debugFieldSizes) and T is (BeaconState | BeaconBlock): obj.serializeFields(fieldName, field):
# for research/serialized_sizes, remove when appropriate # for research/serialized_sizes, remove when appropriate
for name, field in src.fieldPairs: when defined(debugFieldSizes) and obj is (BeaconState|BeaconBlock):
let start = dest.len() let start = w.stream.pos
serialize dest, field w.writeValue field
let sz = dest.len() - start debugEcho k, ": ", w.stream.pos - start
debugEcho(name, ": ", sz)
else: else:
for field in src.fields: w.writeValue field
serialize dest, field w.endRecord(memo)
# Write size (we only know it once we've serialized the object!) proc readValue*(r: var SszReader, result: var auto) =
var objLen = dest.len() - lenPos - 4 # We are not using overloads here, because this leads to
littleEndian32(dest[lenPos].addr, objLen.addr) # slightly better error messages when the user provides
# additional overloads for `readValue`.
type T = result.type
mixin readValue
# ################### Core functions ################################### template checkEof(n: int) =
if not r.stream[].ensureBytes(n):
raise newException(UnexpectedEofError, "SSZ has insufficient number of bytes")
proc deserialize*(data: openArray[byte], when result is ValidatorIndex|TrivialType:
typ: typedesc): auto {.inline.} = let bytesToRead = result.sszLen;
# TODO: returns Option[typ]: https://github.com/nim-lang/Nim/issues/9195 checkEof bytesToRead
var ret: typ
var offset: int
if not deserialize(ret, offset, data): none(typ)
else: some(ret)
func serialize*(value: auto): seq[byte] = when result is ValidatorPubKey|ValidatorSig:
serialize(result, value) if not result.init(r.stream.readBytes(bytesToRead)):
raise newException(CorruptedDataError, "Failed to load a BLS key or signature")
else:
result = T.fromBytesSSZ(r.stream.readBytes(bytesToRead))
elif result is enum:
# TODO what to do with out-of-range values?? rejecting means breaking
# forwards compatibility..
result = cast[T](r.readValue(uint64))
elif result is string:
{.error: "The SSZ format doesn't support the string type yet".}
else:
let totalLen = int r.readValue(uint32)
checkEof totalLen
let endPos = r.stream[].pos + totalLen
when T is seq:
type ElemType = type(result[0])
# Items are of homogenous type, but not necessarily homogenous length,
# cannot pre-allocate item list generically
while r.stream[].pos < endPos:
result.add r.readValue(ElemType)
elif T is array:
type ElemType = type(result[0])
var i = 0
while r.stream[].pos < endPos:
if i > result.len:
raise newException(CorruptedDataError, "SSZ includes unexpected bytes past the end of an array")
result[i] = r.readValue(ElemType)
i += 1
else:
result.deserializeFields(fieldName, field):
field = r.readValue(field.type)
if r.stream[].pos != endPos:
raise newException(CorruptedDataError, "SSZ includes unexpected bytes past the end of the deserialized object")
# ################### Hashing ################################### # ################### Hashing ###################################
@ -251,7 +266,7 @@ func hash(a, b: openArray[byte]): array[32, byte] =
# TODO: er, how is this _actually_ done? # TODO: er, how is this _actually_ done?
# Mandatory bug: https://github.com/nim-lang/Nim/issues/9825 # Mandatory bug: https://github.com/nim-lang/Nim/issues/9825
func empty(T: typedesc): T = discard func empty(T: type): T = discard
const emptyChunk = empty(array[CHUNK_SIZE, byte]) const emptyChunk = empty(array[CHUNK_SIZE, byte])
func merkleHash[T](lst: openArray[T]): array[32, byte] func merkleHash[T](lst: openArray[T]): array[32, byte]

View File

@ -1,8 +1,8 @@
import import
options, tables, options, tables,
chronicles, eth/[rlp, p2p], chronos, ranges/bitranges, eth/p2p/rlpx, chronicles, chronos, ranges/bitranges,
spec/[datatypes, crypto, digest], spec/[datatypes, crypto, digest],
beacon_node, beacon_chain_db, block_pool, time, ssz beacon_node, eth2_network, beacon_chain_db, block_pool, time, ssz
type type
ValidatorChangeLogEntry* = object ValidatorChangeLogEntry* = object
@ -58,7 +58,6 @@ proc importBlocks(node: BeaconNode, roots: openarray[(Eth2Digest, uint64)], head
info "Forward sync imported blocks", goodBlocks, badBlocks, headers = headers.len, bodies = bodies.len, roots = roots.len info "Forward sync imported blocks", goodBlocks, badBlocks, headers = headers.len, bodies = bodies.len, roots = roots.len
p2pProtocol BeaconSync(version = 1, p2pProtocol BeaconSync(version = 1,
shortName = "bcs", shortName = "bcs",
networkState = BeaconSyncState): networkState = BeaconSyncState):
@ -75,10 +74,9 @@ p2pProtocol BeaconSync(version = 1,
bestRoot: Eth2Digest # TODO bestRoot: Eth2Digest # TODO
bestSlot: uint64 = node.state.data.slot bestSlot: uint64 = node.state.data.slot
await peer.status(protocolVersion, networkId, latestFinalizedRoot, latestFinalizedEpoch, let m = await handshake(peer, timeout = 500,
bestRoot, bestSlot) status(networkId, latestFinalizedRoot,
latestFinalizedEpoch, bestRoot, bestSlot))
let m = await peer.nextMsg(BeaconSync.status)
let bestDiff = cmp((latestFinalizedEpoch, bestSlot), (m.latestFinalizedEpoch, m.bestSlot)) let bestDiff = cmp((latestFinalizedEpoch, bestSlot), (m.latestFinalizedEpoch, m.bestSlot))
if bestDiff == 0: if bestDiff == 0:
# Nothing to do? # Nothing to do?
@ -109,13 +107,25 @@ p2pProtocol BeaconSync(version = 1,
let bodies = await peer.getBeaconBlockBodies(bodiesRequest) let bodies = await peer.getBeaconBlockBodies(bodiesRequest)
node.importBlocks(roots.roots, headers.get.blockHeaders, bodies.get.blockBodies) node.importBlocks(roots.roots, headers.get.blockHeaders, bodies.get.blockBodies)
proc status(peer: Peer, protocolVersion, networkId: int, latestFinalizedRoot: Eth2Digest, proc status(
latestFinalizedEpoch: uint64, bestRoot: Eth2Digest, bestSlot: uint64) peer: Peer,
networkId: int,
latestFinalizedRoot: Eth2Digest,
latestFinalizedEpoch: uint64,
bestRoot: Eth2Digest,
bestSlot: uint64) {.libp2pProtocol("hello", "1.0.0").}
proc beaconBlockRoots(peer: Peer, roots: openarray[(Eth2Digest, uint64)]) proc beaconBlockRoots(
peer: Peer,
roots: openarray[(Eth2Digest, uint64)]) {.libp2pProtocol("rpc/beacon_block_roots", "1.0.0").}
requestResponse: requestResponse:
proc getBeaconBlockHeaders(peer: Peer, blockRoot: Eth2Digest, slot: uint64, maxHeaders: int, skipSlots: int) = proc getBeaconBlockHeaders(
peer: Peer,
blockRoot: Eth2Digest,
slot: uint64,
maxHeaders: int,
skipSlots: int) {.libp2pProtocol("rpc/beacon_block_headers", "1.0.0").} =
# TODO: validate maxHeaders and implement slipSlots # TODO: validate maxHeaders and implement slipSlots
var s = slot var s = slot
var headers = newSeqOfCap[BeaconBlockHeader](maxHeaders) var headers = newSeqOfCap[BeaconBlockHeader](maxHeaders)
@ -126,95 +136,25 @@ p2pProtocol BeaconSync(version = 1,
headers.add(db.getBlock(r).get().toHeader) headers.add(db.getBlock(r).get().toHeader)
if headers.len == maxHeaders: break if headers.len == maxHeaders: break
inc s inc s
await peer.beaconBlockHeaders(reqId, headers) await response.send(headers)
proc beaconBlockHeaders(peer: Peer, blockHeaders: openarray[BeaconBlockHeader]) proc beaconBlockHeaders(
peer: Peer,
blockHeaders: openarray[BeaconBlockHeader])
requestResponse: requestResponse:
proc getBeaconBlockBodies(peer: Peer, blockRoots: openarray[Eth2Digest]) = proc getBeaconBlockBodies(
peer: Peer,
blockRoots: openarray[Eth2Digest]) {.libp2pProtocol("rpc/beacon_block_bodies", "1.0.0").} =
# TODO: Validate blockRoots.len # TODO: Validate blockRoots.len
var bodies = newSeqOfCap[BeaconBlockBody](blockRoots.len) var bodies = newSeqOfCap[BeaconBlockBody](blockRoots.len)
let db = peer.networkState.db let db = peer.networkState.db
for r in blockRoots: for r in blockRoots:
if (let blk = db.getBlock(r); blk.isSome): if (let blk = db.getBlock(r); blk.isSome):
bodies.add(blk.get().body) bodies.add(blk.get().body)
await peer.beaconBlockBodies(reqId, bodies) await response.send(bodies)
proc beaconBlockBodies(peer: Peer, blockBodies: openarray[BeaconBlockBody]) proc beaconBlockBodies(
peer: Peer,
blockBodies: openarray[BeaconBlockBody])
requestResponse:
proc getValidatorChangeLog(peer: Peer, changeLogHead: Eth2Digest) =
var bb: BeaconBlock
var bs: BeaconState
# TODO: get the changelog from the DB.
await peer.validatorChangeLog(reqId, bb, bs, [], [], @[])
proc validatorChangeLog(peer: Peer,
signedBlock: BeaconBlock,
beaconState: BeaconState,
added: openarray[ValidatorPubKey],
removed: openarray[uint32],
order: seq[byte])
type
# A bit shorter names for convenience
ChangeLog = BeaconSync.validatorChangeLog
ChangeLogEntry = ValidatorChangeLogEntry
func validate*(log: ChangeLog): bool =
# TODO:
# Assert that the number of raised bits in log.order (a.k.a population count)
# matches the number of elements in log.added
# https://en.wikichip.org/wiki/population_count
return true
iterator changes*(log: ChangeLog): ChangeLogEntry =
var
bits = log.added.len + log.removed.len
addedIdx = 0
removedIdx = 0
template nextItem(collection): auto =
let idx = `collection Idx`
inc `collection Idx`
log.collection[idx]
for i in 0 ..< bits:
yield if log.order.getBit(i):
ChangeLogEntry(kind: Activation, pubkey: nextItem(added))
else:
ChangeLogEntry(kind: ValidatorSetDeltaFlags.Exit, index: nextItem(removed))
proc getValidatorChangeLog*(node: EthereumNode, changeLogHead: Eth2Digest):
Future[(Peer, ChangeLog)] {.async.} =
while true:
let peer = node.randomPeerWith(BeaconSync)
if peer == nil: return
let res = await peer.getValidatorChangeLog(changeLogHead, timeout = 1)
if res.isSome:
return (peer, res.get)
proc applyValidatorChangeLog*(log: ChangeLog,
outBeaconState: var BeaconState): bool =
# TODO:
#
# 1. Validate that the signedBlock state root hash matches the
# provided beaconState
#
# 2. Validate that the applied changelog produces the correct
# new change log head
#
# 3. Check that enough signatures from the known validator set
# are present
#
# 4. Apply all changes to the validator set
#
outBeaconState.finalized_epoch =
log.signedBlock.slot div SLOTS_PER_EPOCH
outBeaconState.validator_registry_delta_chain_tip =
log.beaconState.validator_registry_delta_chain_tip

8
beacon_chain/version.nim Normal file
View File

@ -0,0 +1,8 @@
const
versionMajor* = 0
versionMinor* = 1
versionBuild* = 10
template versionAsStr*: string =
$versionMajor & "." & $versionMinor & "." & $versionBuild

View File

@ -1,5 +1,7 @@
# https://github.com/nim-lang/Nim/issues/8294#issuecomment-454556051 # https://github.com/nim-lang/Nim/issues/8294#issuecomment-454556051
@if windows: @if windows:
-d:"chronicles_colors=NoColors" -d:"chronicles_colors=NoColors"
@else
# -d:withLibP2P
@end @end

View File

@ -6,8 +6,9 @@
# at your option. This file may not be copied, modified, or distributed except according to those terms. # at your option. This file may not be copied, modified, or distributed except according to those terms.
import import
unittest, nimcrypto, eth/common, sequtils, options, blscurve, unittest, sequtils, options,
../beacon_chain/ssz, ../beacon_chain/spec/datatypes nimcrypto, eth/common, blscurve, serialization/testing/generic_suite,
../beacon_chain/ssz, ../beacon_chain/spec/[datatypes, digest]
func filled[N: static[int], T](typ: type array[N, T], value: T): array[N, T] = func filled[N: static[int], T](typ: type array[N, T], value: T): array[N, T] =
for val in result.mitems: for val in result.mitems:
@ -35,8 +36,7 @@ suite "Simple serialization":
f2: EthAddress.filled(byte 35), f2: EthAddress.filled(byte 35),
f3: MDigest[256].filled(byte 35), f3: MDigest[256].filled(byte 35),
f4: @[byte 'c'.ord, 'o'.ord, 'w'.ord], f4: @[byte 'c'.ord, 'o'.ord, 'w'.ord],
f5: ValidatorIndex(79) f5: ValidatorIndex(79))
)
var expected_ser = @[ var expected_ser = @[
byte 67, 0, 0, 0, # length byte 67, 0, 0, 0, # length
@ -49,58 +49,33 @@ suite "Simple serialization":
expected_ser &= [byte 79, 0, 0] expected_ser &= [byte 79, 0, 0]
test "Object deserialization": test "Object deserialization":
let deser = expected_ser.deserialize(Foo).get() let deser = SSZ.decode(expected_ser, Foo)
check: expected_deser == deser check: expected_deser == deser
test "Object serialization": test "Object serialization":
let ser = expected_deser.serialize() let ser = SSZ.encode(expected_deser)
check: expected_ser == ser check: expected_ser == ser
test "Not enough data": test "Not enough data":
check: expect SerializationError:
expected_ser[0..^2].deserialize(Foo).isNone() let x = SSZ.decode(expected_ser[0..^2], Foo)
expected_ser[1..^1].deserialize(Foo).isNone()
expect SerializationError:
let x = SSZ.decode(expected_ser[1..^1], Foo)
test "ValidatorIndex roundtrip": test "ValidatorIndex roundtrip":
# https://github.com/nim-lang/Nim/issues/10027 # https://github.com/nim-lang/Nim/issues/10027
let v = 79.ValidatorIndex let v = 79.ValidatorIndex
let ser = v.serialize() let ser = SSZ.encode(v)
check: check:
ser.len() == 3 ser.len() == 3
deserialize(ser, type(v)).get() == v SSZ.decode(ser, v.type) == v
test "Array roundtrip": SSZ.roundripTest [1, 2, 3]
let v = [1, 2, 3] SSZ.roundripTest @[1, 2, 3]
let ser = v.serialize() SSZ.roundripTest SigKey.random().getKey()
check: SSZ.roundripTest BeaconBlock(slot: 42, signature: sign(SigKey.random(), 0'u64, ""))
deserialize(ser, type(v)).get() == v SSZ.roundripTest BeaconState(slot: 42)
test "Seq roundtrip":
let v = @[1, 2, 3]
let ser = v.serialize()
check:
deserialize(ser, type(v)).get() == v
test "Key roundtrip":
let v = SigKey.random().getKey()
let ser = v.serialize()
check:
deserialize(ser, type(v)).get() == v
# Just to see that we can serialize stuff at all
test "Roundtrip main eth2 types":
let
bb = BeaconBlock(
slot: 42,
signature: sign(SigKey.random(), 0'u64, "")
)
bs = BeaconState(slot: 42)
check:
bb.serialize().deserialize(BeaconBlock).get() == bb
bs.serialize().deserialize(BeaconState).get() == bs
suite "Tree hashing": suite "Tree hashing":
# TODO Nothing but smoke tests for now.. # TODO Nothing but smoke tests for now..
@ -117,3 +92,4 @@ suite "Tree hashing":
test "Hash integer": test "Hash integer":
check: hash_tree_root(0x01'u32) == [1'u8, 0, 0, 0] # little endian! check: hash_tree_root(0x01'u32) == [1'u8, 0, 0, 0] # little endian!
check: hash_tree_root(ValidatorIndex(0x01)) == [1'u8, 0, 0] # little endian! check: hash_tree_root(ValidatorIndex(0x01)) == [1'u8, 0, 0] # little endian!