2020-05-19 14:18:07 +00:00
|
|
|
# beacon_chain
|
2021-02-25 13:37:22 +00:00
|
|
|
# Copyright (c) 2018-2021 Status Research & Development GmbH
|
2020-05-19 14:18:07 +00:00
|
|
|
# Licensed and distributed under either of
|
|
|
|
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
|
|
|
|
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
|
|
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
|
2020-06-16 05:45:04 +00:00
|
|
|
{.push raises: [Defect].}
|
|
|
|
|
2020-05-19 14:18:07 +00:00
|
|
|
import
|
2020-07-28 13:54:32 +00:00
|
|
|
chronicles,
|
2020-12-16 08:37:22 +00:00
|
|
|
stew/[assign2, results],
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
../spec/[forks, signatures, signatures_batch, state_transition],
|
|
|
|
"."/[block_dag, blockchain_dag]
|
2020-05-19 14:18:07 +00:00
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
export results, signatures_batch, block_dag, blockchain_dag
|
2020-05-21 17:08:31 +00:00
|
|
|
|
2020-05-19 14:18:07 +00:00
|
|
|
# Clearance
|
|
|
|
# ---------------------------------------------
|
|
|
|
#
|
|
|
|
# This module is in charge of making the
|
|
|
|
# "quarantined" network blocks
|
2020-07-30 19:18:17 +00:00
|
|
|
# pass the firewall and be stored in the chain DAG
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2020-06-16 05:45:04 +00:00
|
|
|
logScope:
|
|
|
|
topics = "clearance"
|
2020-05-19 14:18:07 +00:00
|
|
|
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
proc addResolvedHeadBlock(
|
2021-12-06 09:49:01 +00:00
|
|
|
dag: ChainDAGRef,
|
2021-06-23 14:43:18 +00:00
|
|
|
state: var StateData,
|
2021-11-05 07:34:34 +00:00
|
|
|
trustedBlock: ForkyTrustedSignedBeaconBlock,
|
2020-08-05 06:28:43 +00:00
|
|
|
parent: BlockRef, cache: var StateCache,
|
2021-09-27 14:22:58 +00:00
|
|
|
onBlockAdded: OnPhase0BlockAdded | OnAltairBlockAdded | OnMergeBlockAdded,
|
2021-10-19 15:20:55 +00:00
|
|
|
stateDataDur, sigVerifyDur, stateVerifyDur: Duration
|
2021-12-06 09:49:01 +00:00
|
|
|
): BlockRef =
|
2021-06-11 17:51:46 +00:00
|
|
|
doAssert getStateField(state.data, slot) == trustedBlock.message.slot,
|
2020-08-18 20:29:33 +00:00
|
|
|
"state must match block"
|
2021-01-25 18:45:48 +00:00
|
|
|
doAssert state.blck.root == trustedBlock.message.parent_root,
|
2020-08-18 20:29:33 +00:00
|
|
|
"the StateData passed into the addResolved function not yet updated!"
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2020-07-16 13:16:51 +00:00
|
|
|
let
|
2021-01-25 18:45:48 +00:00
|
|
|
blockRoot = trustedBlock.root
|
|
|
|
blockRef = BlockRef.init(blockRoot, trustedBlock.message)
|
2021-05-28 16:34:00 +00:00
|
|
|
startTick = Moment.now()
|
2020-08-11 19:39:53 +00:00
|
|
|
|
|
|
|
link(parent, blockRef)
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
dag.forkBlocks.incl(KeyedBlockRef.init(blockRef))
|
2020-05-19 14:18:07 +00:00
|
|
|
|
|
|
|
# Resolved blocks should be stored in database
|
2021-06-24 18:34:08 +00:00
|
|
|
dag.putBlock(trustedBlock)
|
2021-05-28 19:03:20 +00:00
|
|
|
let putBlockTick = Moment.now()
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2021-05-29 18:56:30 +00:00
|
|
|
var foundHead: bool
|
2020-05-19 14:18:07 +00:00
|
|
|
for head in dag.heads.mitems():
|
2020-07-28 13:54:32 +00:00
|
|
|
if head.isAncestorOf(blockRef):
|
|
|
|
head = blockRef
|
2021-05-29 18:56:30 +00:00
|
|
|
foundHead = true
|
2020-05-19 14:18:07 +00:00
|
|
|
break
|
|
|
|
|
2021-05-29 18:56:30 +00:00
|
|
|
if not foundHead:
|
|
|
|
dag.heads.add(blockRef)
|
|
|
|
|
|
|
|
# Up to here, state.data was referring to the new state after the block had
|
|
|
|
# been applied but the `blck` field was still set to the parent
|
|
|
|
state.blck = blockRef
|
|
|
|
|
2021-06-01 11:13:40 +00:00
|
|
|
# Regardless of the chain we're on, the deposits come in the same order so
|
|
|
|
# as soon as we import a block, we'll also update the shared public key
|
|
|
|
# cache
|
|
|
|
|
2021-06-11 17:51:46 +00:00
|
|
|
dag.updateValidatorKeys(getStateField(state.data, validators).asSeq())
|
2021-06-01 11:13:40 +00:00
|
|
|
|
2021-05-29 18:56:30 +00:00
|
|
|
# Getting epochRef with the state will potentially create a new EpochRef
|
|
|
|
let
|
|
|
|
epochRef = dag.getEpochRef(state, cache)
|
|
|
|
epochRefTick = Moment.now()
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2020-10-01 18:56:42 +00:00
|
|
|
debug "Block resolved",
|
2020-05-19 14:18:07 +00:00
|
|
|
blockRoot = shortLog(blockRoot),
|
2021-11-05 15:39:47 +00:00
|
|
|
blck = shortLog(trustedBlock.message),
|
2021-05-28 16:34:00 +00:00
|
|
|
heads = dag.heads.len(),
|
2021-05-28 19:03:20 +00:00
|
|
|
stateDataDur, sigVerifyDur, stateVerifyDur,
|
2021-05-29 18:56:30 +00:00
|
|
|
putBlockDur = putBlockTick - startTick,
|
|
|
|
epochRefDur = epochRefTick - putBlockTick
|
2020-08-18 20:29:33 +00:00
|
|
|
|
2020-07-30 15:48:25 +00:00
|
|
|
# Notify others of the new block before processing the quarantine, such that
|
|
|
|
# notifications for parents happens before those of the children
|
2020-07-22 09:42:55 +00:00
|
|
|
if onBlockAdded != nil:
|
2021-06-21 08:35:24 +00:00
|
|
|
onBlockAdded(blockRef, trustedBlock, epochRef)
|
2021-09-22 12:17:15 +00:00
|
|
|
if not(isNil(dag.onBlockAdded)):
|
|
|
|
dag.onBlockAdded(ForkedTrustedSignedBeaconBlock.init(trustedBlock))
|
2020-07-09 09:29:32 +00:00
|
|
|
|
2021-12-06 09:49:01 +00:00
|
|
|
blockRef
|
2020-07-09 09:29:32 +00:00
|
|
|
|
2021-06-01 11:13:40 +00:00
|
|
|
proc checkStateTransition(
|
2022-01-11 10:01:54 +00:00
|
|
|
dag: ChainDAGRef, signedBlock: SomeForkySignedBeaconBlock,
|
2021-12-06 09:49:01 +00:00
|
|
|
cache: var StateCache): Result[void, BlockError] =
|
2021-06-01 11:13:40 +00:00
|
|
|
## Ensure block can be applied on a state
|
2021-06-11 17:51:46 +00:00
|
|
|
func restore(v: var ForkedHashedBeaconState) =
|
2021-01-25 18:45:48 +00:00
|
|
|
# TODO address this ugly workaround - there should probably be a
|
|
|
|
# `state_transition` that takes a `StateData` instead and updates
|
|
|
|
# the block as well
|
2021-05-05 06:54:21 +00:00
|
|
|
doAssert v.addr == addr dag.clearanceState.data
|
|
|
|
assign(dag.clearanceState, dag.headState)
|
2021-01-25 18:45:48 +00:00
|
|
|
|
2022-01-17 11:19:58 +00:00
|
|
|
let res = state_transition_block(
|
Implement split preset/config support (#2710)
* Implement split preset/config support
This is the initial bulk refactor to introduce runtime config values in
a number of places, somewhat replacing the existing mechanism of loading
network metadata.
It still needs more work, this is the initial refactor that introduces
runtime configuration in some of the places that need it.
The PR changes the way presets and constants work, to match the spec. In
particular, a "preset" now refers to the compile-time configuration
while a "cfg" or "RuntimeConfig" is the dynamic part.
A single binary can support either mainnet or minimal, but not both.
Support for other presets has been removed completely (can be readded,
in case there's need).
There's a number of outstanding tasks:
* `SECONDS_PER_SLOT` still needs fixing
* loading custom runtime configs needs redoing
* checking constants against YAML file
* yeerongpilly support
`build/nimbus_beacon_node --network=yeerongpilly --discv5:no --log-level=DEBUG`
* load fork epoch from config
* fix fork digest sent in status
* nicer error string for request failures
* fix tools
* one more
* fixup
* fixup
* fixup
* use "standard" network definition folder in local testnet
Files are loaded from their standard locations, including genesis etc,
to conform to the format used in the `eth2-networks` repo.
* fix launch scripts, allow unknown config values
* fix base config of rest test
* cleanups
* bundle mainnet config using common loader
* fix spec links and names
* only include supported preset in binary
* drop yeerongpilly, add altair-devnet-0, support boot_enr.yaml
2021-07-12 13:01:38 +00:00
|
|
|
dag.cfg, dag.clearanceState.data, signedBlock,
|
2022-01-17 11:19:58 +00:00
|
|
|
cache, dag.updateFlags, restore)
|
|
|
|
if res.isErr():
|
|
|
|
info "Invalid block",
|
|
|
|
blockRoot = shortLog(signedBlock.root),
|
|
|
|
blck = shortLog(signedBlock.message),
|
|
|
|
error = res.error()
|
2021-01-25 18:45:48 +00:00
|
|
|
|
2021-12-06 09:49:01 +00:00
|
|
|
err(BlockError.Invalid)
|
|
|
|
else:
|
|
|
|
ok()
|
2021-01-25 18:45:48 +00:00
|
|
|
|
2021-07-07 09:09:47 +00:00
|
|
|
proc advanceClearanceState*(dag: ChainDAGRef) =
|
2021-05-29 18:56:30 +00:00
|
|
|
# When the chain is synced, the most likely block to be produced is the block
|
|
|
|
# right after head - we can exploit this assumption and advance the state
|
|
|
|
# to that slot before the block arrives, thus allowing us to do the expensive
|
|
|
|
# epoch transition ahead of time.
|
|
|
|
# Notably, we use the clearance state here because that's where the block will
|
|
|
|
# first be seen - later, this state will be copied to the head state!
|
2021-06-11 17:51:46 +00:00
|
|
|
if dag.clearanceState.blck.slot == getStateField(dag.clearanceState.data, slot):
|
2021-06-01 11:13:40 +00:00
|
|
|
let next =
|
|
|
|
dag.clearanceState.blck.atSlot(dag.clearanceState.blck.slot + 1)
|
|
|
|
|
2021-06-01 15:33:00 +00:00
|
|
|
let startTick = Moment.now()
|
2021-05-29 18:56:30 +00:00
|
|
|
var cache = StateCache()
|
2022-01-05 18:38:04 +00:00
|
|
|
if not updateStateData(dag, dag.clearanceState, next, true, cache):
|
|
|
|
# The next head update will likely fail - something is very wrong here
|
|
|
|
error "Cannot advance to next slot, database corrupt?",
|
|
|
|
clearance = shortLog(dag.clearanceState.blck),
|
|
|
|
next = shortLog(next)
|
|
|
|
else:
|
|
|
|
debug "Prepared clearance state for next block",
|
|
|
|
next, updateStateDur = Moment.now() - startTick
|
2021-06-01 15:33:00 +00:00
|
|
|
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
proc addHeadBlock*(
|
2021-12-06 09:49:01 +00:00
|
|
|
dag: ChainDAGRef, verifier: var BatchVerifier,
|
|
|
|
signedBlock: ForkySignedBeaconBlock,
|
|
|
|
onBlockAdded: OnPhase0BlockAdded | OnAltairBlockAdded | OnMergeBlockAdded
|
|
|
|
): Result[BlockRef, BlockError] =
|
|
|
|
## Try adding a block to the chain, verifying first that it passes the state
|
|
|
|
## transition function and contains correct cryptographic signature.
|
|
|
|
##
|
|
|
|
## Cryptographic checks can be skipped by adding skipBLSValidation to dag.updateFlags
|
2021-08-05 08:26:10 +00:00
|
|
|
logScope:
|
|
|
|
blockRoot = shortLog(signedBlock.root)
|
2021-11-05 15:39:47 +00:00
|
|
|
blck = shortLog(signedBlock.message)
|
2021-12-06 09:49:01 +00:00
|
|
|
|
|
|
|
template blck(): untyped = signedBlock.message # shortcuts without copy
|
|
|
|
template blockRoot(): untyped = signedBlock.root
|
|
|
|
|
|
|
|
# If the block we get is older than what we finalized already, we drop it.
|
|
|
|
# One way this can happen is that we start request a block and finalization
|
|
|
|
# happens in the meantime - the block we requested will then be stale
|
|
|
|
# by the time it gets here.
|
|
|
|
if blck.slot <= dag.finalizedHead.slot:
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
let previous = dag.getBlockIdAtSlot(blck.slot)
|
|
|
|
if previous.isProposed() and blockRoot == previous.bid.root:
|
|
|
|
# We should not call the block added callback for blocks that already
|
|
|
|
# existed in the pool, as that may confuse consumers such as the fork
|
|
|
|
# choice.
|
|
|
|
debug "Duplicate block"
|
|
|
|
return err(BlockError.Duplicate)
|
|
|
|
|
|
|
|
# Block is older than finalized, but different from the block in our
|
|
|
|
# canonical history: it must be from an unviable branch
|
|
|
|
debug "Block from unviable fork",
|
2021-12-06 09:49:01 +00:00
|
|
|
finalizedHead = shortLog(dag.finalizedHead),
|
|
|
|
tail = shortLog(dag.tail)
|
|
|
|
|
|
|
|
return err(BlockError.UnviableFork)
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
# Check non-finalized blocks as well
|
|
|
|
if dag.containsForkBlock(blockRoot):
|
|
|
|
return err(BlockError.Duplicate)
|
2021-12-06 09:49:01 +00:00
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
let parent = dag.getBlockRef(blck.parent_root).valueOr:
|
|
|
|
# There are two cases where the parent won't be found: we don't have it or
|
|
|
|
# it has been finalized already, and as a result the branch the new block
|
|
|
|
# is on is no longer a viable fork candidate - we can't tell which is which
|
|
|
|
# at this stage, but we can check if we've seen the parent block previously
|
|
|
|
# and thus prevent requests for it to be downloaded again.
|
|
|
|
if dag.db.containsBlock(blck.parent_root):
|
|
|
|
debug "Block unviable due to pre-finalized-checkpoint parent"
|
|
|
|
return err(BlockError.UnviableFork)
|
|
|
|
|
|
|
|
debug "Block parent unknown or finalized already"
|
2021-12-06 09:49:01 +00:00
|
|
|
return err(BlockError.MissingParent)
|
2021-01-25 18:45:48 +00:00
|
|
|
|
|
|
|
if parent.slot >= signedBlock.message.slot:
|
|
|
|
# A block whose parent is newer than the block itself is clearly invalid -
|
|
|
|
# discard it immediately
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
debug "Block with invalid parent",
|
2021-01-25 18:45:48 +00:00
|
|
|
parentBlock = shortLog(parent)
|
|
|
|
|
2021-12-06 09:49:01 +00:00
|
|
|
return err(BlockError.Invalid)
|
2021-01-25 18:45:48 +00:00
|
|
|
|
|
|
|
# The block is resolved, now it's time to validate it to ensure that the
|
|
|
|
# blocks we add to the database are clean for the given state
|
2021-05-28 19:03:20 +00:00
|
|
|
let startTick = Moment.now()
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2021-12-30 11:33:03 +00:00
|
|
|
# The clearance state works as the canonical
|
|
|
|
# "let's make things permanent" point and saves things to the database -
|
|
|
|
# storing things is slow, so we don't want to do so before there's a
|
|
|
|
# reasonable chance that the information will become more permanently useful -
|
|
|
|
# by the time a new block reaches this point, the parent block will already
|
|
|
|
# have "established" itself in the network to some degree at least.
|
2021-01-25 18:45:48 +00:00
|
|
|
var cache = StateCache()
|
2022-01-05 18:38:04 +00:00
|
|
|
if not updateStateData(
|
|
|
|
dag, dag.clearanceState, parent.atSlot(signedBlock.message.slot), true,
|
|
|
|
cache):
|
|
|
|
# We should never end up here - the parent must be a block no older than and
|
|
|
|
# rooted in the finalized checkpoint, hence we should always be able to
|
|
|
|
# load its corresponding state
|
|
|
|
error "Unable to load clearance state for parent block, database corrupt?",
|
|
|
|
parent = shortLog(parent.atSlot(signedBlock.message.slot)),
|
|
|
|
clearance = shortLog(dag.clearanceState.blck)
|
|
|
|
return err(BlockError.MissingParent)
|
|
|
|
|
2021-05-28 19:03:20 +00:00
|
|
|
let stateDataTick = Moment.now()
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2021-06-01 11:13:40 +00:00
|
|
|
# First, batch-verify all signatures in block
|
2021-01-25 18:45:48 +00:00
|
|
|
if skipBLSValidation notin dag.updateFlags:
|
|
|
|
# TODO: remove skipBLSValidation
|
|
|
|
var sigs: seq[SignatureSet]
|
2021-08-05 08:26:10 +00:00
|
|
|
if (let e = sigs.collectSignatureSets(
|
2021-08-09 11:14:28 +00:00
|
|
|
signedBlock, dag.db.immutableValidators,
|
|
|
|
dag.clearanceState.data, cache); e.isErr()):
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
# A PublicKey or Signature isn't on the BLS12-381 curve
|
2021-08-05 08:26:10 +00:00
|
|
|
info "Unable to load signature sets",
|
|
|
|
err = e.error()
|
|
|
|
|
2021-12-06 09:49:01 +00:00
|
|
|
return err(BlockError.Invalid)
|
|
|
|
if not verifier.batchVerify(sigs):
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
info "Block signature verification failed",
|
|
|
|
signature = shortLog(signedBlock.signature)
|
2021-12-06 09:49:01 +00:00
|
|
|
return err(BlockError.Invalid)
|
2020-05-19 14:18:07 +00:00
|
|
|
|
2021-05-28 19:03:20 +00:00
|
|
|
let sigVerifyTick = Moment.now()
|
2021-12-06 09:49:01 +00:00
|
|
|
|
|
|
|
? checkStateTransition(dag, signedBlock.asSigVerified(), cache)
|
2021-05-29 18:56:30 +00:00
|
|
|
|
2021-05-28 19:03:20 +00:00
|
|
|
let stateVerifyTick = Moment.now()
|
2021-01-25 18:45:48 +00:00
|
|
|
# Careful, clearanceState.data has been updated but not blck - we need to
|
|
|
|
# create the BlockRef first!
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
ok addResolvedHeadBlock(
|
2021-12-06 09:49:01 +00:00
|
|
|
dag, dag.clearanceState,
|
2021-01-25 18:45:48 +00:00
|
|
|
signedBlock.asTrusted(),
|
|
|
|
parent, cache,
|
2021-05-28 19:03:20 +00:00
|
|
|
onBlockAdded,
|
|
|
|
stateDataDur = stateDataTick - startTick,
|
|
|
|
sigVerifyDur = sigVerifyTick - stateDataTick,
|
|
|
|
stateVerifyDur = stateVerifyTick - sigVerifyTick)
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
|
|
|
|
proc addBackfillBlock*(
|
|
|
|
dag: ChainDAGRef,
|
|
|
|
signedBlock: ForkySignedBeaconBlock): Result[void, BlockError] =
|
|
|
|
## When performing checkpoint sync, we need to backfill historical blocks
|
|
|
|
## in order to respond to GetBlocksByRange requests. Backfill blocks are
|
|
|
|
## added in backwards order, one by one, based on the `parent_root` of the
|
|
|
|
## earliest block we know about.
|
|
|
|
##
|
|
|
|
## Because only one history is relevant when backfilling, one doesn't have to
|
|
|
|
## consider forks or other finalization-related issues - a block is either
|
|
|
|
## valid and finalized, or not.
|
|
|
|
logScope:
|
|
|
|
blockRoot = shortLog(signedBlock.root)
|
|
|
|
blck = shortLog(signedBlock.message)
|
2021-12-21 10:40:14 +00:00
|
|
|
backfill = (dag.backfill.slot, shortLog(dag.backfill.parent_root))
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
|
|
|
|
template blck(): untyped = signedBlock.message # shortcuts without copy
|
|
|
|
template blockRoot(): untyped = signedBlock.root
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
let startTick = Moment.now()
|
|
|
|
|
|
|
|
if blck.slot >= dag.backfill.slot:
|
|
|
|
let previous = dag.getBlockIdAtSlot(blck.slot)
|
|
|
|
if previous.isProposed() and blockRoot == previous.bid.root:
|
|
|
|
# We should not call the block added callback for blocks that already
|
|
|
|
# existed in the pool, as that may confuse consumers such as the fork
|
|
|
|
# choice. While the validation result won't be accessed, it's IGNORE,
|
|
|
|
# according to the spec.
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
return err(BlockError.Duplicate)
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
# Block is older than finalized, but different from the block in our
|
|
|
|
# canonical history: it must be from an unviable branch
|
|
|
|
debug "Block from unviable fork",
|
|
|
|
finalizedHead = shortLog(dag.finalizedHead),
|
|
|
|
backfill = shortLog(dag.backfill)
|
|
|
|
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
return err(BlockError.UnviableFork)
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
if blck.slot == dag.genesis.slot and
|
|
|
|
dag.backfill.parent_root == dag.genesis.root:
|
|
|
|
if blockRoot != dag.genesis.root:
|
|
|
|
# We've matched the backfill blocks all the way back to genesis via the
|
|
|
|
# `parent_root` chain and ended up at a different genesis - one way this
|
|
|
|
# can happen is when an invalid `--network` parameter is given during
|
|
|
|
# startup (though in theory, we check that - maybe the database was
|
|
|
|
# swapped or something?).
|
|
|
|
fatal "Checkpoint given during initial startup inconsistent with genesis - wrong network used when starting the node?"
|
|
|
|
quit 1
|
|
|
|
|
|
|
|
dag.backfillBlocks[blck.slot.int] = blockRoot
|
|
|
|
dag.backfill = blck.toBeaconBlockSummary()
|
|
|
|
|
|
|
|
notice "Received matching genesis block during backfill, backfill complete"
|
|
|
|
|
|
|
|
# Backfill done - dag.backfill.slot now points to genesis block just like
|
|
|
|
# it would if we loaded a fully backfilled database - returning duplicate
|
|
|
|
# here is appropriate, though one could also call it ... ok?
|
|
|
|
return err(BlockError.Duplicate)
|
|
|
|
|
|
|
|
if dag.backfill.parent_root != blockRoot:
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
debug "Block does not match expected backfill root"
|
|
|
|
return err(BlockError.MissingParent) # MissingChild really, but ..
|
|
|
|
|
|
|
|
# If the hash is correct, the block itself must be correct, but the root does
|
|
|
|
# not cover the signature, which we check next
|
|
|
|
|
|
|
|
let proposerKey = dag.validatorKey(blck.proposer_index)
|
|
|
|
if proposerKey.isNone():
|
|
|
|
# This cannot happen, in theory, unless the checkpoint state is broken or
|
|
|
|
# there is a bug in our validator key caching scheme - in order not to
|
|
|
|
# send invalid attestations, we'll shut down defensively here - this might
|
|
|
|
# need revisiting in the future.
|
|
|
|
fatal "Invalid proposer in backfill block - checkpoint state corrupt?"
|
|
|
|
quit 1
|
|
|
|
|
|
|
|
if not verify_block_signature(
|
|
|
|
dag.forkAtEpoch(blck.slot.epoch),
|
|
|
|
getStateField(dag.headState.data, genesis_validators_root),
|
|
|
|
blck.slot,
|
|
|
|
signedBlock.root,
|
|
|
|
proposerKey.get(),
|
|
|
|
signedBlock.signature):
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
info "Block signature verification failed",
|
|
|
|
signature = shortLog(signedBlock.signature)
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
return err(BlockError.Invalid)
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
let sigVerifyTick = Moment.now
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
|
|
|
|
dag.putBlock(signedBlock.asTrusted())
|
|
|
|
|
|
|
|
# Invariants maintained on startup
|
|
|
|
doAssert dag.backfillBlocks.lenu64 == dag.tail.slot.uint64
|
|
|
|
doAssert dag.backfillBlocks.lenu64 > blck.slot.uint64
|
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
dag.backfillBlocks[blck.slot.int] = blockRoot
|
|
|
|
dag.backfill = blck.toBeaconBlockSummary()
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
|
limit by-root requests to non-finalized blocks (#3293)
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
2022-01-21 11:33:16 +00:00
|
|
|
let putBlockTick = Moment.now
|
|
|
|
debug "Block backfilled",
|
|
|
|
sigVerifyDur = sigVerifyTick - startTick,
|
|
|
|
putBlockDur = putBlocktick - sigVerifyTick
|
Backfill support for ChainDAG (#3171)
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
2021-12-13 13:36:06 +00:00
|
|
|
|
|
|
|
ok()
|