2018-09-06 12:31:20 +02:00
|
|
|
|
# beacon_chain
|
|
|
|
|
# Copyright (c) 2018 Status Research & Development GmbH
|
|
|
|
|
# Licensed and distributed under either of
|
|
|
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
|
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
|
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
|
|
|
|
|
|
# A port of https://github.com/ethereum/research/blob/master/clock_disparity/ghost_node.py
|
|
|
|
|
# Specs: https://ethresear.ch/t/beacon-chain-casper-ffg-rpj-mini-spec/2760
|
|
|
|
|
# Part of Casper+Sharding chain v2.1: https://notes.ethereum.org/SCIg8AH5SA-O4C1G1LYZHQ#
|
|
|
|
|
# Note that implementation is not updated to the latest v2.1 yet
|
|
|
|
|
|
|
|
|
|
import math, random
|
|
|
|
|
|
2018-09-10 12:35:11 +02:00
|
|
|
|
proc normal_distribution*(mean = 0, std = 1): int =
|
2018-09-06 12:31:20 +02:00
|
|
|
|
## Return an integer sampled from a normal distribution (gaussian)
|
2018-09-06 18:16:11 +02:00
|
|
|
|
## ⚠ This is not thread-safe
|
2018-09-06 12:31:20 +02:00
|
|
|
|
# Implementation via the Box-Muller method
|
|
|
|
|
# See https://en.wikipedia.org/wiki/Box–Muller_transform
|
2018-09-10 12:35:11 +02:00
|
|
|
|
let
|
|
|
|
|
mean = mean.float
|
|
|
|
|
std = std.float
|
2018-09-06 12:31:20 +02:00
|
|
|
|
|
|
|
|
|
var
|
|
|
|
|
z1 {.global.}: float
|
|
|
|
|
generate {.global.}: bool
|
|
|
|
|
|
|
|
|
|
generate = not generate
|
|
|
|
|
|
|
|
|
|
if not generate:
|
|
|
|
|
return int(z1 * std + mean)
|
|
|
|
|
|
|
|
|
|
let
|
|
|
|
|
u1 = rand(1.0)
|
|
|
|
|
u2 = rand(1.0)
|
|
|
|
|
R = sqrt(-2.0 * ln(u1))
|
|
|
|
|
z0 = R * cos(2 * PI * u2)
|
|
|
|
|
z1 = R * sin(2 * PI * u2)
|
|
|
|
|
return int(z0 * std + mean)
|
|
|
|
|
|
|
|
|
|
when isMainModule:
|
|
|
|
|
import sequtils, stats, strformat
|
|
|
|
|
|
|
|
|
|
func absolute_error(y_true, y: float): float =
|
|
|
|
|
## Absolute error: |y_true - y|
|
|
|
|
|
abs(y_true - y)
|
|
|
|
|
func relative_error(y_true, y: float): float =
|
|
|
|
|
## Relative error: |y_true - y|/|y_true|
|
|
|
|
|
abs(y_true - y)/abs(y_true)
|
|
|
|
|
|
|
|
|
|
let
|
2018-09-10 12:35:11 +02:00
|
|
|
|
mu = 1000
|
|
|
|
|
sigma = 12
|
2018-09-06 12:31:20 +02:00
|
|
|
|
a = newSeqWith(10000000, normal_distribution(mean = mu, std = sigma))
|
|
|
|
|
|
|
|
|
|
var statistics: RunningStat
|
|
|
|
|
for val in a:
|
|
|
|
|
statistics.push val
|
|
|
|
|
|
|
|
|
|
# Note: we use the sample standard deviation, not population
|
|
|
|
|
# See Bessel's correction and standard deviation estimation.
|
|
|
|
|
|
|
|
|
|
proc report(stat: string, value, expected: float) =
|
|
|
|
|
echo &"{stat:<20} {value:>9.4f} | Expected: {expected:>9.4f}"
|
|
|
|
|
|
|
|
|
|
echo &"Statistics on {a.len} samples"
|
2018-09-10 12:35:11 +02:00
|
|
|
|
report "Mean: ", statistics.mean, mu.float
|
|
|
|
|
report "Standard deviation: ", statistics.standardDeviationS, sigma.float
|
2018-09-06 12:31:20 +02:00
|
|
|
|
|
|
|
|
|
# Absolute error
|
2018-09-10 12:35:11 +02:00
|
|
|
|
doAssert absolute_error(mu.float, statistics.mean) < 0.6
|
|
|
|
|
doAssert absolute_error(sigma.float, statistics.standardDeviationS) < 0.01
|
2018-09-06 12:31:20 +02:00
|
|
|
|
|
|
|
|
|
# Relative error
|
2018-09-10 12:35:11 +02:00
|
|
|
|
doAssert relative_error(mu.float, statistics.mean) < 0.01
|
|
|
|
|
doAssert relative_error(sigma.float, statistics.standardDeviationS) < 0.01
|