nimbus-eth1/fluffy/content_db.nim
KonradStaniec b3570fae6a
Add api to get n furthest elements from db (#1026)
* Add api to get n furthest elements from db
2022-04-03 15:14:44 +02:00

185 lines
6.8 KiB
Nim

# Nimbus
# Copyright (c) 2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
std/[options, heapqueue],
eth/db/kvstore,
eth/db/kvstore_sqlite3,
stint,
./network/state/state_content
export kvstore_sqlite3
# This version of content db is the most basic, simple solution where data is
# stored no matter what content type or content network in the same kvstore with
# the content id as key. The content id is derived from the content key, and the
# deriviation is different depending on the content type. As we use content id,
# this part is currently out of the scope / API of the ContentDB.
# In the future it is likely that that either:
# 1. More kvstores are added per network, and thus depending on the network a
# different kvstore needs to be selected.
# 2. Or more kvstores are added per network and per content type, and thus
# content key fields are required to access the data.
# 3. Or databases are created per network (and kvstores pre content type) and
# thus depending on the network the right db needs to be selected.
type
RowInfo = tuple
contentId: array[32, byte]
payloadLength: int64
ObjInfo* = object
contentId*: array[32, byte]
payloadLength*: int64
distFrom*: UInt256
ContentDB* = ref object
kv: KvStoreRef
sizeStmt: SqliteStmt[NoParams, int64]
vacStmt: SqliteStmt[NoParams, void]
getAll: SqliteStmt[NoParams, RowInfo]
# we want objects to be sorted from largest distance to closests
proc `<`(a, b: ObjInfo): bool =
return a.distFrom < b.distFrom
template expectDb(x: auto): untyped =
# There's no meaningful error handling implemented for a corrupt database or
# full disk - this requires manual intervention, so we'll panic for now
x.expect("working database (disk broken/full?)")
proc new*(T: type ContentDB, path: string, inMemory = false): ContentDB =
let db =
if inMemory:
SqStoreRef.init("", "fluffy-test", inMemory = true).expect(
"working database (out of memory?)")
else:
SqStoreRef.init(path, "fluffy").expectDb()
let getSizeStmt = db.prepareStmt(
"SELECT page_count * page_size as size FROM pragma_page_count(), pragma_page_size();",
NoParams, int64).get()
let vacStmt = db.prepareStmt(
"VACUUM;",
NoParams, void).get()
let kvStore = kvStore db.openKvStore().expectDb()
# this need to go after `openKvStore`, as it checks that the table name kvstore
# already exists.
let getKeysStmt = db.prepareStmt(
"SELECT key, length(value) FROM kvstore",
NoParams, RowInfo
).get()
ContentDB(kv: kvStore, sizeStmt: getSizeStmt, vacStmt: vacStmt, getAll: getKeysStmt)
proc getNFurthestElements*(db: ContentDB, target: UInt256, n: uint64): seq[ObjInfo] =
## Get at most n furthest elements from database in order from furthest to closest.
## We are also returning payload lengths so caller can decide how many of those elements
## need to be deleted.
##
## Currently it uses xor metric
##
## Currently works by querying for all elements in database and doing all necessary
## work on program level. This is mainly due to two facts:
## - sqlite does not have build xor function, also it does not handle bitwise
## operations on blobs as expected
## - our nim wrapper for sqlite does not support create_function api of sqlite
## so we cannot create custom function comparing blobs at sql level. If that
## would be possible we may be able to all this work by one sql query
if n == 0:
return newSeq[ObjInfo]()
var heap = initHeapQueue[ObjInfo]()
var ri: RowInfo
for e in db.getAll.exec(ri):
let contentId = UInt256.fromBytesBE(ri.contentId)
# TODO: Currently it assumes xor distance, but when we start testing networks with
# other distance functions this needs to be adjusted to the custom distance function
let dist = contentId xor target
let obj = ObjInfo(contentId: ri.contentId, payloadLength: ri.payloadLength, distFrom: dist)
if (uint64(len(heap)) < n):
heap.push(obj)
else:
if obj > heap[0]:
discard heap.replace(obj)
var res: seq[ObjInfo] = newSeq[ObjInfo](heap.len())
var i = heap.len() - 1
while heap.len() > 0:
res[i] = heap.pop()
dec i
return res
proc reclaimSpace*(db: ContentDB): void =
## Runs sqlie VACUMM commands which rebuilds db, repacking it into a minimal amount of disk space
## Ideal mode of operation, is to run it after several deletes.
## Another options would be to run 'PRAGMA auto_vacuum = FULL;' statement at the start of
## db to leave it in sqlite power to clean up
db.vacStmt.exec().expectDb()
proc size*(db: ContentDB): int64 =
## Retrun current size of DB as product of sqlite page_count and page_size
## https://www.sqlite.org/pragma.html#pragma_page_count
## https://www.sqlite.org/pragma.html#pragma_page_size
## It returns total size of db i.e both data and metadata used to store content
## also it is worth noting that when deleting content, size may lags behind due
## to the way how deleting works in sqlite.
## Good description can be found in: https://www.sqlite.org/lang_vacuum.html
var size: int64 = 0
discard (db.sizeStmt.exec do(res: int64):
size = res).expectDb()
return size
proc get*(db: ContentDB, key: openArray[byte]): Option[seq[byte]] =
var res: Option[seq[byte]]
proc onData(data: openArray[byte]) = res = some(@data)
discard db.kv.get(key, onData).expectDb()
return res
proc put*(db: ContentDB, key, value: openArray[byte]) =
db.kv.put(key, value).expectDb()
proc contains*(db: ContentDB, key: openArray[byte]): bool =
db.kv.contains(key).expectDb()
proc del*(db: ContentDB, key: openArray[byte]) =
db.kv.del(key).expectDb()
# TODO: Could also decide to use the ContentKey SSZ bytestring, as this is what
# gets send over the network in requests, but that would be a bigger key. Or the
# same hashing could be done on it here.
# However ContentId itself is already derived through different digests
# depending on the content type, and this ContentId typically needs to be
# checked with the Radius/distance of the node anyhow. So lets see how we end up
# using this mostly in the code.
proc get*(db: ContentDB, key: ContentId): Option[seq[byte]] =
# TODO: Here it is unfortunate that ContentId is a uint256 instead of Digest256.
db.get(key.toByteArrayBE())
proc put*(db: ContentDB, key: ContentId, value: openArray[byte]) =
db.put(key.toByteArrayBE(), value)
proc contains*(db: ContentDB, key: ContentId): bool =
db.contains(key.toByteArrayBE())
proc del*(db: ContentDB, key: ContentId) =
db.del(key.toByteArrayBE())