nimbus-eth1/fluffy/network/wire/portal_protocol.nim
KonradStaniec f0cd340163
Adhere to transport limits in seed methods (#1186)
* Add means to limit offered content to fit talkreq

* Add test for history network limits

* Change seed method api to return num of items offered
2022-08-09 14:32:41 +02:00

1420 lines
53 KiB
Nim

# Nimbus - Portal Network
# Copyright (c) 2021-2022 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
## Implementation of the Portal wire protocol as specified at:
## https://github.com/ethereum/portal-network-specs/blob/master/portal-wire-protocol.md
{.push raises: [Defect].}
import
std/[sequtils, sets, algorithm],
stew/[results, byteutils, leb128], chronicles, chronos, nimcrypto/hash,
bearssl, ssz_serialization, metrics, faststreams,
eth/rlp, eth/p2p/discoveryv5/[protocol, node, enr, routing_table, random2,
nodes_verification, lru],
".."/../[content_db, seed_db],
"."/[portal_stream, portal_protocol_config],
./messages
export messages, routing_table
declareCounter portal_message_requests_incoming,
"Portal wire protocol incoming message requests",
labels = ["protocol_id", "message_type"]
declareCounter portal_message_decoding_failures,
"Portal wire protocol message decoding failures",
labels = ["protocol_id"]
declareCounter portal_message_requests_outgoing,
"Portal wire protocol outgoing message requests",
labels = ["protocol_id", "message_type"]
declareCounter portal_message_response_incoming,
"Portal wire protocol incoming message responses",
labels = ["protocol_id", "message_type"]
const requestBuckets = [1.0, 3.0, 5.0, 7.0, 9.0, Inf]
declareHistogram portal_lookup_node_requests,
"Portal wire protocol amount of requests per node lookup",
labels = ["protocol_id"], buckets = requestBuckets
declareHistogram portal_lookup_content_requests,
"Portal wire protocol amount of requests per node lookup",
labels = ["protocol_id"], buckets = requestBuckets
declareCounter portal_lookup_content_failures,
"Portal wire protocol content lookup failures",
labels = ["protocol_id"]
const contentKeysBuckets = [0.0, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, Inf]
declareHistogram portal_content_keys_offered,
"Portal wire protocol amount of content keys per offer message send",
labels = ["protocol_id"], buckets = contentKeysBuckets
declareHistogram portal_content_keys_accepted,
"Portal wire protocol amount of content keys per accept message received",
labels = ["protocol_id"], buckets = contentKeysBuckets
declareCounter portal_gossip_offers_successful,
"Portal wire protocol successful content offers from neighborhood gossip",
labels = ["protocol_id"]
declareCounter portal_gossip_offers_failed,
"Portal wire protocol failed content offers from neighborhood gossip",
labels = ["protocol_id"]
declareCounter portal_gossip_with_lookup,
"Portal wire protocol neighborhood gossip that required a node lookup",
labels = ["protocol_id"]
declareCounter portal_gossip_without_lookup,
"Portal wire protocol neighborhood gossip that did not require a node lookup",
labels = ["protocol_id"]
# Note: These metrics are to get some idea on how many enrs are send on average.
# Relevant issue: https://github.com/ethereum/portal-network-specs/issues/136
const enrsBuckets = [0.0, 1.0, 3.0, 5.0, 8.0, 9.0, Inf]
declareHistogram portal_nodes_enrs_packed,
"Portal wire protocol amount of enrs packed in a nodes message",
labels = ["protocol_id"], buckets = enrsBuckets
# This one will currently hit the max numbers because all neighbours are send,
# not only the ones closer to the content.
declareHistogram portal_content_enrs_packed,
"Portal wire protocol amount of enrs packed in a content message",
labels = ["protocol_id"], buckets = enrsBuckets
declareCounter portal_pruning_counter,
"Number of pruning event which happened during node lifetime",
labels = ["protocol_id"]
declareGauge portal_pruning_deleted_elements,
"Number of elements delted in last pruning",
labels = ["protocol_id"]
logScope:
topics = "portal_wire"
const
alpha = 3 ## Kademlia concurrency factor
enrsResultLimit* = 32 ## Maximum amount of ENRs in the total Nodes messages
## that will be processed
refreshInterval = 5.minutes ## Interval of launching a random query to
## refresh the routing table.
revalidateMax = 10000 ## Revalidation of a peer is done between 0 and this
## value in milliseconds
initialLookups = 1 ## Amount of lookups done when populating the routing table
# TalkResp message is a response message so the session is established and a
# regular discv5 packet is assumed for size calculation.
# Regular message = IV + header + message
# talkResp message = rlp: [request-id, response]
talkRespOverhead =
16 + # IV size
55 + # header size
1 + # talkResp msg id
3 + # rlp encoding outer list, max length will be encoded in 2 bytes
9 + # request id (max = 8) + 1 byte from rlp encoding byte string
3 + # rlp encoding response byte string, max length in 2 bytes
16 # HMAC
# These are the concurrent offers per Portal wire protocol that is running.
# Using the `offerQueue` allows for limiting the amount of offers send and
# thus how many streams can be started.
# TODO:
# More thought needs to go into this as it is currently on a per network
# basis. Keep it simple like that? Or limit it better at the stream transport
# level? In the latter case, this might still need to be checked/blocked at
# the very start of sending the offer, because blocking/waiting too long
# between the received accept message and actually starting the stream and
# sending data could give issues due to timeouts on the other side.
# And then there are still limits to be applied also for FindContent and the
# incoming directions.
concurrentOffers = 50
type
ToContentIdHandler* =
proc(contentKey: ByteList): Option[ContentId] {.raises: [Defect], gcsafe.}
DbGetHandler* =
proc(contentDB: ContentDB, contentKey: ByteList):
(Option[ContentId], Option[seq[byte]]) {.raises: [Defect], gcsafe.}
PortalProtocolId* = array[2, byte]
RadiusCache* = LRUCache[NodeId, UInt256]
ContentInfo* = object
contentKey*: ByteList
content*: seq[byte]
OfferRequestType = enum
Direct, Database
OfferRequest = object
dst: Node
case kind: OfferRequestType
of Direct:
contentList: List[ContentInfo, contentKeysLimit]
of Database:
contentKeys: ContentKeysList
PortalProtocol* = ref object of TalkProtocol
protocolId*: PortalProtocolId
routingTable*: RoutingTable
baseProtocol*: protocol.Protocol
contentDB*: ContentDB
toContentId*: ToContentIdHandler
dbGet*: DbGetHandler
radiusConfig: RadiusConfig
dataRadius*: UInt256
bootstrapRecords*: seq[Record]
lastLookup: chronos.Moment
refreshLoop: Future[void]
revalidateLoop: Future[void]
stream*: PortalStream
radiusCache: RadiusCache
offerQueue: AsyncQueue[OfferRequest]
offerWorkers: seq[Future[void]]
PortalResult*[T] = Result[T, cstring]
FoundContentKind* = enum
Nodes,
Content
FoundContent* = object
src*: Node
case kind*: FoundContentKind
of Content:
content*: seq[byte]
of Nodes:
nodes*: seq[Node]
ContentLookupResult* = object
content*: seq[byte]
# List of nodes which do not have requested content, and for which
# content is in their range
nodesInterestedInContent*: seq[Node]
proc init*(
T: type ContentInfo,
contentKey: ByteList,
content: seq[byte]): T =
ContentInfo(
contentKey: contentKey,
content: content
)
proc init*(
T: type ContentLookupResult,
content: seq[byte],
nodesInterestedInContent: seq[Node]): T =
ContentLookupResult(
content: content,
nodesInterestedInContent: nodesInterestedInContent
)
func `$`(id: PortalProtocolId): string =
id.toHex()
proc addNode*(p: PortalProtocol, node: Node): NodeStatus =
p.routingTable.addNode(node)
proc addNode*(p: PortalProtocol, r: Record): bool =
let node = newNode(r)
if node.isOk():
p.addNode(node[]) == Added
else:
false
func localNode*(p: PortalProtocol): Node = p.baseProtocol.localNode
func neighbours*(p: PortalProtocol, id: NodeId, seenOnly = false): seq[Node] =
p.routingTable.neighbours(id = id, seenOnly = seenOnly)
proc inRange(
p: PortalProtocol,
nodeId: NodeId,
nodeRadius: Uint256,
contentId: ContentId): bool =
let distance = p.routingTable.distance(nodeId, contentId)
distance <= nodeRadius
func inRange*(p: PortalProtocol, contentId: ContentId): bool =
p.inRange(p.localNode.id, p.dataRadius, contentId)
func truncateEnrs(
nodes: seq[Node], maxSize: int, enrOverhead: int): List[ByteList, 32] =
var enrs: List[ByteList, 32]
var totalSize = 0
for n in nodes:
let enr = ByteList.init(n.record.raw)
if totalSize + enr.len() + enrOverhead <= maxSize:
let res = enrs.add(enr) # 32 limit will not be reached
totalSize = totalSize + enr.len()
else:
break
enrs
func handlePing(
p: PortalProtocol, ping: PingMessage, srcId: NodeId): seq[byte] =
# TODO: This should become custom per Portal Network
# TODO: Need to think about the effect of malicious actor sending lots of
# pings from different nodes to clear the LRU.
let customPayloadDecoded =
try: SSZ.decode(ping.customPayload.asSeq(), CustomPayload)
except MalformedSszError, SszSizeMismatchError:
# invalid custom payload, send empty back
return @[]
p.radiusCache.put(srcId, customPayloadDecoded.dataRadius)
let customPayload = CustomPayload(dataRadius: p.dataRadius)
let p = PongMessage(enrSeq: p.baseProtocol.localNode.record.seqNum,
customPayload: ByteList(SSZ.encode(customPayload)))
encodeMessage(p)
proc handleFindNodes(p: PortalProtocol, fn: FindNodesMessage): seq[byte] =
if fn.distances.len == 0:
let enrs = List[ByteList, 32](@[])
encodeMessage(NodesMessage(total: 1, enrs: enrs))
elif fn.distances.contains(0):
# A request for our own record.
let enr = ByteList(rlp.encode(p.baseProtocol.localNode.record))
encodeMessage(NodesMessage(total: 1, enrs: List[ByteList, 32](@[enr])))
else:
let distances = fn.distances.asSeq()
if distances.all(proc (x: uint16): bool = return x <= 256):
let
nodes = p.routingTable.neighboursAtDistances(distances, seenOnly = true)
# TODO: Total amount of messages is set fixed to 1 for now, else we would
# need to either move the send of the talkresp messages here, or allow for
# returning multiple messages.
# On the long run, it might just be better to use a stream in these cases?
# Size calculation is done to truncate the ENR results in order to not go
# over the discv5 packet size limits. ENRs are sorted so the closest nodes
# will still be passed.
const
nodesOverhead = 1 + 1 + 4 # msg id + total + container offset
maxPayloadSize = maxDiscv5PacketSize - talkRespOverhead - nodesOverhead
enrOverhead = 4 # per added ENR, 4 bytes offset overhead
let enrs = truncateEnrs(nodes, maxPayloadSize, enrOverhead)
portal_nodes_enrs_packed.observe(enrs.len().int64)
encodeMessage(NodesMessage(total: 1, enrs: enrs))
else:
# invalid request, send empty back
let enrs = List[ByteList, 32](@[])
encodeMessage(NodesMessage(total: 1, enrs: enrs))
proc handleFindContent(
p: PortalProtocol, fc: FindContentMessage, srcId: NodeId): seq[byte] =
const
contentOverhead = 1 + 1 # msg id + SSZ Union selector
maxPayloadSize = maxDiscv5PacketSize - talkRespOverhead - contentOverhead
enrOverhead = 4 # per added ENR, 4 bytes offset overhead
let (contentIdOpt, contentOpt) = p.dbGet(p.contentDb, fc.contentKey)
if contentOpt.isSome():
let content = contentOpt.get()
if content.len <= maxPayloadSize:
encodeMessage(ContentMessage(
contentMessageType: contentType, content: ByteList(content)))
else:
let connectionId = p.stream.addContentRequest(srcId, content)
encodeMessage(ContentMessage(
contentMessageType: connectionIdType, connectionId: connectionId))
elif contentIdOpt.isSome():
# Don't have the content, send closest neighbours to content id.
let
closestNodes = p.routingTable.neighbours(
NodeId(contentIdOpt.get()), seenOnly = true)
enrs = truncateEnrs(closestNodes, maxPayloadSize, enrOverhead)
portal_content_enrs_packed.observe(enrs.len().int64)
encodeMessage(ContentMessage(contentMessageType: enrsType, enrs: enrs))
else:
# Return empty response when:
# a. content key validation fails
# b. it is a special case such as "latest accumulator"
# TODO: Better would be to return no message at all for a, needs changes on
# discv5 layer.
# TODO: Better would be to have a specific protocol message for b.
@[]
proc handleOffer(p: PortalProtocol, o: OfferMessage, srcId: NodeId): seq[byte] =
var contentKeysBitList = ContentKeysBitList.init(o.contentKeys.len)
var contentKeys = ContentKeysList.init(@[])
# TODO: Do we need some protection against a peer offering lots (64x) of
# content that fits our Radius but is actually bogus?
# Additional TODO, but more of a specification clarification: What if we don't
# want any of the content? Reply with empty bitlist and a connectionId of
# all zeroes but don't actually allow an uTP connection?
for i, contentKey in o.contentKeys:
let contentIdOpt = p.toContentId(contentKey)
if contentIdOpt.isSome():
let contentId = contentIdOpt.get()
if p.inRange(contentId):
if not p.contentDB.contains(contentId):
contentKeysBitList.setBit(i)
discard contentKeys.add(contentKey)
else:
# Return empty response when content key validation fails
return @[]
let connectionId =
if contentKeysBitList.countOnes() != 0:
p.stream.addContentOffer(srcId, contentKeys)
else:
# When the node does not accept any of the content offered, reply with an
# all zeroes bitlist and connectionId.
# Note: What to do in this scenario is not defined in the Portal spec.
Bytes2([byte 0x00, 0x00])
encodeMessage(
AcceptMessage(connectionId: connectionId, contentKeys: contentKeysBitList))
proc messageHandler(protocol: TalkProtocol, request: seq[byte],
srcId: NodeId, srcUdpAddress: Address): seq[byte] =
doAssert(protocol of PortalProtocol)
logScope:
protocolId = p.protocolId
let p = PortalProtocol(protocol)
let decoded = decodeMessage(request)
if decoded.isOk():
let message = decoded.get()
trace "Received message request", srcId, srcUdpAddress, kind = message.kind
# Received a proper Portal message, check if this node exists in the base
# routing table and add if so.
# When the node exists in the base discv5 routing table it is likely that
# it will/would end up in the portal routing tables too but that is not
# certain as more nodes might exists on the base layer, and it will depend
# on the distance, order of lookups, etc.
# Note: Could add a findNodes with distance 0 call when not, and perhaps,
# optionally pass ENRs if the message was a discv5 handshake containing the
# ENR.
let node = p.baseProtocol.getNode(srcId)
if node.isSome():
discard p.routingTable.addNode(node.get())
portal_message_requests_incoming.inc(
labelValues = [$p.protocolId, $message.kind])
case message.kind
of MessageKind.ping:
p.handlePing(message.ping, srcId)
of MessageKind.findnodes:
p.handleFindNodes(message.findNodes)
of MessageKind.findcontent:
p.handleFindContent(message.findcontent, srcId)
of MessageKind.offer:
p.handleOffer(message.offer, srcId)
else:
# This would mean a that Portal wire response message is being send over a
# discv5 talkreq message.
debug "Invalid Portal wire message type over talkreq", kind = message.kind
@[]
else:
portal_message_decoding_failures.inc(labelValues = [$p.protocolId])
debug "Packet decoding error", error = decoded.error, srcId, srcUdpAddress
@[]
proc fromLogRadius(T: type UInt256, logRadius: uint16): T =
# Get the max value of the logRadius range
pow((2).stuint(256), logRadius) - 1
proc getInitialRadius(rc: RadiusConfig): UInt256 =
case rc.kind
of Static:
return UInt256.fromLogRadius(rc.logRadius)
of Dynamic:
# In case of a dynamic radius we start from the maximum value to quickly
# gather as much data as possible, and also make sure each data piece in
# the database is in our range after a node restart.
# Alternative would be to store node the radius in database, and initialize it
# from database after a restart
return UInt256.high()
proc new*(T: type PortalProtocol,
baseProtocol: protocol.Protocol,
protocolId: PortalProtocolId,
contentDB: ContentDB,
toContentId: ToContentIdHandler,
dbGet: DbGetHandler,
bootstrapRecords: openArray[Record] = [],
distanceCalculator: DistanceCalculator = XorDistanceCalculator,
config: PortalProtocolConfig = defaultPortalProtocolConfig
): T =
let initialRadius: UInt256 = config.radiusConfig.getInitialRadius()
let proto = PortalProtocol(
protocolHandler: messageHandler,
protocolId: protocolId,
routingTable: RoutingTable.init(
baseProtocol.localNode, config.bitsPerHop, config.tableIpLimits,
baseProtocol.rng, distanceCalculator),
baseProtocol: baseProtocol,
contentDB: contentDB,
toContentId: toContentId,
dbGet: dbGet,
radiusConfig: config.radiusConfig,
dataRadius: initialRadius,
bootstrapRecords: @bootstrapRecords,
radiusCache: RadiusCache.init(256),
offerQueue: newAsyncQueue[OfferRequest](concurrentOffers))
proto.baseProtocol.registerTalkProtocol(@(proto.protocolId), proto).expect(
"Only one protocol should have this id")
let stream = PortalStream.new(udata = proto, rng = proto.baseProtocol.rng)
proto.stream = stream
proto
# Sends the discv5 talkreq nessage with provided Portal message, awaits and
# validates the proper response, and updates the Portal Network routing table.
proc reqResponse[Request: SomeMessage, Response: SomeMessage](
p: PortalProtocol,
dst: Node,
request: Request
): Future[PortalResult[Response]] {.async.} =
logScope:
protocolId = p.protocolId
trace "Send message request", dstId = dst.id, kind = messageKind(Request)
portal_message_requests_outgoing.inc(
labelValues = [$p.protocolId, $messageKind(Request)])
let talkresp =
await talkreq(p.baseProtocol, dst, @(p.protocolId), encodeMessage(request))
# Note: Failure of `decodeMessage` might also simply mean that the peer is
# not supporting the specific talk protocol, as according to specification
# an empty response needs to be send in that case.
# See: https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#talkreq-request-0x05
let messageResponse = talkresp
.flatMap(proc (x: seq[byte]): Result[Message, cstring] = decodeMessage(x))
.flatMap(proc (m: Message): Result[Response, cstring] =
getInnerMessageResult[Response](
m, cstring"Invalid message response received")
)
if messageResponse.isOk():
trace "Received message response", srcId = dst.id,
srcAddress = dst.address, kind = messageKind(Response)
portal_message_response_incoming.inc(
labelValues = [$p.protocolId, $messageKind(Response)])
p.routingTable.setJustSeen(dst)
else:
debug "Error receiving message response", error = messageResponse.error,
srcId = dst.id, srcAddress = dst.address
p.routingTable.replaceNode(dst)
return messageResponse
proc pingImpl*(p: PortalProtocol, dst: Node):
Future[PortalResult[PongMessage]] {.async.} =
let customPayload = CustomPayload(dataRadius: p.dataRadius)
let ping = PingMessage(enrSeq: p.baseProtocol.localNode.record.seqNum,
customPayload: ByteList(SSZ.encode(customPayload)))
return await reqResponse[PingMessage, PongMessage](p, dst, ping)
proc findNodesImpl*(p: PortalProtocol, dst: Node, distances: List[uint16, 256]):
Future[PortalResult[NodesMessage]] {.async.} =
let fn = FindNodesMessage(distances: distances)
# TODO Add nodes validation
return await reqResponse[FindNodesMessage, NodesMessage](p, dst, fn)
proc findContentImpl*(p: PortalProtocol, dst: Node, contentKey: ByteList):
Future[PortalResult[ContentMessage]] {.async.} =
let fc = FindContentMessage(contentKey: contentKey)
return await reqResponse[FindContentMessage, ContentMessage](p, dst, fc)
proc offerImpl*(p: PortalProtocol, dst: Node, contentKeys: ContentKeysList):
Future[PortalResult[AcceptMessage]] {.async.} =
let offer = OfferMessage(contentKeys: contentKeys)
return await reqResponse[OfferMessage, AcceptMessage](p, dst, offer)
proc recordsFromBytes*(rawRecords: List[ByteList, 32]): PortalResult[seq[Record]] =
var records: seq[Record]
for r in rawRecords.asSeq():
var record: Record
if record.fromBytes(r.asSeq()):
records.add(record)
else:
# If any of the ENRs is invalid, fail immediatly. This is similar as what
# is done on the discovery v5 layer.
return err("Deserialization of an ENR failed")
ok(records)
proc ping*(p: PortalProtocol, dst: Node):
Future[PortalResult[PongMessage]] {.async.} =
let pongResponse = await p.pingImpl(dst)
if pongResponse.isOK():
let pong = pongResponse.get()
# TODO: This should become custom per Portal Network
let customPayloadDecoded =
try: SSZ.decode(pong.customPayload.asSeq(), CustomPayload)
except MalformedSszError, SszSizeMismatchError:
# invalid custom payload
return err("Pong message contains invalid custom payload")
p.radiusCache.put(dst.id, customPayloadDecoded.dataRadius)
return pongResponse
proc findNodes*(
p: PortalProtocol, dst: Node, distances: seq[uint16]):
Future[PortalResult[seq[Node]]] {.async.} =
let nodesMessage = await p.findNodesImpl(dst, List[uint16, 256](distances))
if nodesMessage.isOk():
let records = recordsFromBytes(nodesMessage.get().enrs)
if records.isOk():
# TODO: distance function is wrong here for state, fix + tests
return ok(verifyNodesRecords(
records.get(), dst, enrsResultLimit, distances))
else:
return err(records.error)
else:
return err(nodesMessage.error)
proc findContent*(p: PortalProtocol, dst: Node, contentKey: ByteList):
Future[PortalResult[FoundContent]] {.async.} =
let contentMessageResponse = await p.findContentImpl(dst, contentKey)
if contentMessageResponse.isOk():
let m = contentMessageResponse.get()
case m.contentMessageType:
of connectionIdType:
# uTP protocol uses BE for all values in the header, incl. connection id
let nodeAddress = NodeAddress.init(dst)
if nodeAddress.isNone():
# It should not happen as we are already after succesfull talkreq/talkresp
# cycle
error "Trying to connect to node with unknown address",
id = dst.id
return err("Trying to connect to node with unknown address")
let connFuture = p.stream.connectTo(
nodeAddress.unsafeGet(),
uint16.fromBytesBE(m.connectionId)
)
yield connFuture
var connectionResult: Result[UtpSocket[NodeAddress], string]
if connFuture.completed():
connectionResult = connFuture.read()
else:
raise connFuture.error
if connectionResult.isErr():
debug "Utp connection error while trying to find content",
error = connectionResult.error
return err("Error connecting uTP socket")
let socket = connectionResult.get()
try:
# Read all bytes from the socket
# This will either end with a FIN, or because the read action times out.
# A FIN does not necessarily mean that the data read is complete. Further
# validation is required, using a length prefix here might be beneficial for
# this.
let readFut = socket.read()
readFut.cancelCallback = proc(udate: pointer) {.gcsafe.} =
debug "Socket read cancelled",
socketKey = socket.socketKey
# In case this `findContent` gets cancelled while reading the data,
# send a FIN and clean up the socket.
socket.close()
if await readFut.withTimeout(p.stream.contentReadTimeout):
let content = readFut.read
# socket received remote FIN and drained whole buffer, it can be
# safely destroyed without notifing remote
debug "Socket read fully",
socketKey = socket.socketKey
socket.destroy()
return ok(FoundContent(src: dst, kind: Content, content: content))
else :
debug "Socket read time-out",
socketKey = socket.socketKey
socket.close()
return err("Reading data from socket timed out, content request failed")
except CancelledError as exc:
# even though we already installed cancelCallback on readFut, it is worth
# catching CancelledError in case that withTimeout throws CancelledError
# but readFut have already finished.
debug "Socket read cancelled",
socketKey = socket.socketKey
socket.close()
raise exc
of contentType:
return ok(FoundContent(src: dst, kind: Content, content: m.content.asSeq()))
of enrsType:
let records = recordsFromBytes(m.enrs)
if records.isOk():
let verifiedNodes =
verifyNodesRecords(records.get(), dst, enrsResultLimit)
return ok(FoundContent(src: dst, kind: Nodes, nodes: verifiedNodes))
else:
return err("Content message returned invalid ENRs")
else:
warn "FindContent failed due to find content request failure ", error = contentMessageResponse.error, contentKey = contentKey
return err("No content response")
proc getContentKeys(o: OfferRequest): ContentKeysList =
case o.kind
of Direct:
var contentKeys:ContentKeysList
for info in o.contentList:
discard contentKeys.add(info.contentKey)
return contentKeys
of Database:
return o.contentKeys
func getMaxOfferedContentKeys*(protocolIdLen: uint32, maxKeySize: uint32): int =
## Calculates how many ContentKeys will fit in one offer message which
## will be small enouch to fit into discv5 limit.
## This is neccesarry as contentKeysLimit (64) is sometimes to big, and even
## half of this can be too much to fit into discv5 limits.
let maxTalkReqPayload = maxDiscv5PacketSize - getTalkReqOverhead(int(protocolIdLen))
# To calculate how much bytes, `n` content keys of size `maxKeySize` will take
# we can use following equation:
# bytes = (n * (maxKeySize + perContentKeyOverhead)) + offerMessageOverhead
# to calculate maximal number of keys which will will given space this can be
# transformed to:
# n = trunc((bytes - offerMessageOverhead) / (maxKeySize + perContentKeyOverhead))
return (
(maxTalkReqPayload - 5) div (int(maxKeySize) + 4)
)
proc offer(p: PortalProtocol, o: OfferRequest):
Future[PortalResult[void]] {.async.} =
## Offer triggers offer-accept interaction with one peer
## Whole flow has two phases:
## 1. Come to an agreement on what content to transfer, by using offer and accept
## messages.
## 2. Open uTP stream from content provider to content receiver and transfer
## agreed content.
## There are two types of possible offer requests:
## Direct - when caller provides content to transfer. This way, content is
## guaranteed to be transferred as it stays in memory until whole transfer
## is completed.
## Database - when caller provides keys of content to be transferred. This
## way content is provided from database just before it is transferred through
## uTP socket. This is useful when there is a lot of content to be transferred
## to many peers, and keeping it all in memory could exhaust node resources.
## Main drawback is that content may be deleted from the node database
## by the cleanup process before it will be transferred, so this way does not
## guarantee content transfer.
let contentKeys = getContentKeys(o)
debug "Offering content", contentKeys = contentKeys
portal_content_keys_offered.observe(contentKeys.len().int64)
let acceptMessageResponse = await p.offerImpl(o.dst, contentKeys)
if acceptMessageResponse.isOk():
let m = acceptMessageResponse.get()
let contentKeysLen =
case o.kind
of Direct:
o.contentList.len()
of Database:
o.contentKeys.len()
if m.contentKeys.len() != contentKeysLen:
# TODO:
# When there is such system, the peer should get scored negatively here.
error "Accepted content key bitlist has invalid size"
return err("Accepted content key bitlist has invalid size")
let acceptedKeysAmount = m.contentKeys.countOnes()
portal_content_keys_accepted.observe(acceptedKeysAmount.int64)
if acceptedKeysAmount == 0:
debug "No content acceppted", contentKeys = contentKeys
# Don't open an uTP stream if no content was requested
return ok()
let nodeAddress = NodeAddress.init(o.dst)
if nodeAddress.isNone():
# It should not happen as we are already after succesfull talkreq/talkresp
# cycle
error "Trying to connect to node with unknown address",
id = o.dst.id
return err("Trying to connect to node with unknown address")
let connectionResult =
await p.stream.connectTo(
nodeAddress.unsafeGet(),
uint16.fromBytesBE(m.connectionId)
)
if connectionResult.isErr():
debug "Utp connection error while trying to offer content",
error = connectionResult.error, contentKeys = contentKeys
return err("Error connecting uTP socket")
let socket = connectionResult.get()
template lenu32(x: untyped): untyped =
uint32(len(x))
case o.kind
of Direct:
for i, b in m.contentKeys:
if b:
let content = o.contentList[i].content
var output = memoryOutput()
output.write(toBytes(content.lenu32, Leb128).toOpenArray())
output.write(content)
let dataWritten = await socket.write(output.getOutput)
if dataWritten.isErr:
debug "Error writing requested data", error = dataWritten.error, contentKeys = contentKeys
# No point in trying to continue writing data
socket.close()
return err("Error writing requested data")
of Database:
for i, b in m.contentKeys:
if b:
let contentIdOpt = p.toContentId(o.contentKeys[i])
if contentIdOpt.isSome():
let
contentId = contentIdOpt.get()
maybeContent = p.contentDB.get(contentId)
var output = memoryOutput()
if maybeContent.isSome():
let content = maybeContent.get()
output.write(toBytes(content.lenu32, Leb128).toOpenArray())
output.write(content)
else:
# When data turns out missing, add a 0 size varint
output.write(toBytes(0'u8, Leb128).toOpenArray())
let dataWritten = await socket.write(output.getOutput)
if dataWritten.isErr:
debug "Error writing requested data", error = dataWritten.error, contentKeys = contentKeys
# No point in trying to continue writing data
socket.close()
return err("Error writing requested data")
debug "Content successfully offered", contentKeys = contentKeys
await socket.closeWait()
return ok()
else:
warn "Offer failed due to accept request failure ", error = acceptMessageResponse.error, contentKeys = contentKeys
return err("No accept response")
proc offer*(p: PortalProtocol, dst: Node, contentKeys: ContentKeysList):
Future[PortalResult[void]] {.async.} =
let req = OfferRequest(dst: dst, kind: Database, contentKeys: contentKeys)
let res = await p.offer(req)
return res
proc offer*(p: PortalProtocol, dst: Node, content: seq[ContentInfo]):
Future[PortalResult[void]] {.async.} =
if len(content) > contentKeysLimit:
return err("Cannot offer more than 64 content items")
let contentList = List[ContentInfo, contentKeysLimit].init(content)
let req = OfferRequest(dst: dst, kind: Direct, contentList: contentList)
let res = await p.offer(req)
return res
proc offerWorker(p: PortalProtocol) {.async.} =
while true:
let req = await p.offerQueue.popFirst()
let res = await p.offer(req)
if res.isOk():
portal_gossip_offers_successful.inc(labelValues = [$p.protocolId])
else:
portal_gossip_offers_failed.inc(labelValues = [$p.protocolId])
proc offerQueueEmpty*(p: PortalProtocol): bool =
p.offerQueue.empty()
proc lookupWorker(
p: PortalProtocol, dst: Node, target: NodeId): Future[seq[Node]] {.async.} =
let distances = lookupDistances(target, dst.id)
let nodesMessage = await p.findNodes(dst, distances)
if nodesMessage.isOk():
let nodes = nodesMessage.get()
# Attempt to add all nodes discovered
for n in nodes:
discard p.routingTable.addNode(n)
return nodes
else:
return @[]
proc lookup*(p: PortalProtocol, target: NodeId): Future[seq[Node]] {.async.} =
## Perform a lookup for the given target, return the closest n nodes to the
## target. Maximum value for n is `BUCKET_SIZE`.
# `closestNodes` holds the k closest nodes to target found, sorted by distance
# Unvalidated nodes are used for requests as a form of validation.
var closestNodes = p.routingTable.neighbours(target, BUCKET_SIZE,
seenOnly = false)
var asked, seen = initHashSet[NodeId]()
asked.incl(p.baseProtocol.localNode.id) # No need to ask our own node
seen.incl(p.baseProtocol.localNode.id) # No need to discover our own node
for node in closestNodes:
seen.incl(node.id)
var pendingQueries = newSeqOfCap[Future[seq[Node]]](alpha)
var requestAmount = 0'i64
while true:
var i = 0
# Doing `alpha` amount of requests at once as long as closer non queried
# nodes are discovered.
while i < closestNodes.len and pendingQueries.len < alpha:
let n = closestNodes[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.lookupWorker(n, target))
requestAmount.inc()
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query = await one(pendingQueries)
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let nodes = query.read
# TODO: Remove node on timed-out query?
for n in nodes:
if not seen.containsOrIncl(n.id):
# If it wasn't seen before, insert node while remaining sorted
closestNodes.insert(n, closestNodes.lowerBound(n,
proc(x: Node, n: Node): int =
cmp(p.routingTable.distance(x.id, target),
p.routingTable.distance(n.id, target))
))
if closestNodes.len > BUCKET_SIZE:
closestNodes.del(closestNodes.high())
portal_lookup_node_requests.observe(requestAmount)
p.lastLookup = now(chronos.Moment)
return closestNodes
proc triggerPoke*(
p: PortalProtocol,
nodes: seq[Node],
contentKey: ByteList,
content: seq[byte]) =
## Triggers asynchronous offer-accept interaction to provided nodes.
## Provided content should be in range of provided nodes.
for node in nodes:
if not p.offerQueue.full():
try:
let
ci = ContentInfo(contentKey: contentKey, content: content)
list = List[ContentInfo, contentKeysLimit].init(@[ci])
req = OfferRequest(dst: node, kind: Direct, contentList: list)
p.offerQueue.putNoWait(req)
except AsyncQueueFullError as e:
# Should not occur as full() check is done.
raiseAssert(e.msg)
else:
# Offer queue is full, do not start more offer-accept interactions
return
# TODO ContentLookup and Lookup look almost exactly the same, also lookups in other
# networks will probably be very similar. Extract lookup function to separate module
# and make it more generaic
proc contentLookup*(p: PortalProtocol, target: ByteList, targetId: UInt256):
Future[Option[ContentLookupResult]] {.async.} =
## Perform a lookup for the given target, return the closest n nodes to the
## target. Maximum value for n is `BUCKET_SIZE`.
# `closestNodes` holds the k closest nodes to target found, sorted by distance
# Unvalidated nodes are used for requests as a form of validation.
var closestNodes = p.routingTable.neighbours(
targetId, BUCKET_SIZE, seenOnly = false)
# Shuffling the order of the nodes in order to not always hit the same node
# first for the same request.
p.baseProtocol.rng[].shuffle(closestNodes)
var asked, seen = initHashSet[NodeId]()
asked.incl(p.baseProtocol.localNode.id) # No need to ask our own node
seen.incl(p.baseProtocol.localNode.id) # No need to discover our own node
for node in closestNodes:
seen.incl(node.id)
var pendingQueries = newSeqOfCap[Future[PortalResult[FoundContent]]](alpha)
var requestAmount = 0'i64
var nodesWithoutContent: seq[Node] = newSeq[Node]()
while true:
var i = 0
# Doing `alpha` amount of requests at once as long as closer non queried
# nodes are discovered.
while i < closestNodes.len and pendingQueries.len < alpha:
let n = closestNodes[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.findContent(n, target))
requestAmount.inc()
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query = await one(pendingQueries)
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let contentResult = query.read
if contentResult.isOk():
let content = contentResult.get()
case content.kind
of Nodes:
let maybeRadius = p.radiusCache.get(content.src.id)
if maybeRadius.isSome() and
p.inRange(content.src.id, maybeRadius.unsafeGet(), targetId):
# Only return nodes which may be interested in content.
# No need to check for duplicates in nodesWithoutContent
# as requests are never made two times to the same node.
nodesWithoutContent.add(content.src)
for n in content.nodes:
if not seen.containsOrIncl(n.id):
discard p.routingTable.addNode(n)
# If it wasn't seen before, insert node while remaining sorted
closestNodes.insert(n, closestNodes.lowerBound(n,
proc(x: Node, n: Node): int =
cmp(p.routingTable.distance(x.id, targetId),
p.routingTable.distance(n.id, targetId))
))
if closestNodes.len > BUCKET_SIZE:
closestNodes.del(closestNodes.high())
of Content:
# cancel any pending queries as the content has been found
for f in pendingQueries:
f.cancel()
portal_lookup_content_requests.observe(requestAmount)
return some(ContentLookupResult.init(content.content, nodesWithoutContent))
else:
# TODO: Should we do something with the node that failed responding our
# query?
discard
portal_lookup_content_failures.inc()
return none[ContentLookupResult]()
proc query*(p: PortalProtocol, target: NodeId, k = BUCKET_SIZE): Future[seq[Node]]
{.async.} =
## Query k nodes for the given target, returns all nodes found, including the
## nodes queried.
##
## This will take k nodes from the routing table closest to target and
## query them for nodes closest to target. If there are less than k nodes in
## the routing table, nodes returned by the first queries will be used.
var queryBuffer = p.routingTable.neighbours(target, k, seenOnly = false)
var asked, seen = initHashSet[NodeId]()
asked.incl(p.baseProtocol.localNode.id) # No need to ask our own node
seen.incl(p.baseProtocol.localNode.id) # No need to discover our own node
for node in queryBuffer:
seen.incl(node.id)
var pendingQueries = newSeqOfCap[Future[seq[Node]]](alpha)
while true:
var i = 0
while i < min(queryBuffer.len, k) and pendingQueries.len < alpha:
let n = queryBuffer[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.lookupWorker(n, target))
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query = await one(pendingQueries)
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let nodes = query.read
# TODO: Remove node on timed-out query?
for n in nodes:
if not seen.containsOrIncl(n.id):
queryBuffer.add(n)
p.lastLookup = now(chronos.Moment)
return queryBuffer
proc queryRandom*(p: PortalProtocol): Future[seq[Node]] =
## Perform a query for a random target, return all nodes discovered.
p.query(NodeId.random(p.baseProtocol.rng[]))
proc getNClosestNodesWithRadius*(
p: PortalProtocol,
targetId: NodeId,
n: int,
seenOnly: bool = false): seq[(Node, UInt256)] =
let closestLocalNodes = p.routingTable.neighbours(
targetId, k = n, seenOnly = seenOnly)
var nodesWithRadiuses: seq[(Node, UInt256)]
for node in closestLocalNodes:
let radius = p.radiusCache.get(node.id)
if radius.isSome():
nodesWithRadiuses.add((node, radius.unsafeGet()))
return nodesWithRadiuses
proc neighborhoodGossip*(
p: PortalProtocol, contentKeys: ContentKeysList, content: seq[seq[byte]])
{.async.} =
if content.len() == 0:
return
var contentList = List[ContentInfo, contentKeysLimit].init(@[])
for i, contentItem in content:
let contentInfo =
ContentInfo(contentKey: contentKeys[i], content: contentItem)
discard contentList.add(contentInfo)
# Just taking the first content item as target id.
# TODO: come up with something better?
let contentIdOpt = p.toContentId(contentList[0].contentKey)
if contentIdOpt.isNone():
return
let contentId = contentIdOpt.get()
# For selecting the closest nodes to whom to gossip the content a mixed
# approach is taken:
# 1. Select the closest neighbours in the routing table
# 2. Check if the radius is known for these these nodes and whether they are
# in range of the content to be offered.
# 3. If more than n (= 4) nodes are in range, offer these nodes the content
# (max nodes set at 8).
# 4. If less than n nodes are in range, do a node lookup, and offer the nodes
# returned from the lookup the content (max nodes set at 8)
#
# This should give a bigger rate of success and avoid the data being stopped
# in its propagation than when looking only for nodes in the own routing
# table, but at the same time avoid unnecessary node lookups.
# It might still cause issues in data getting propagated in a wider id range.
const maxGossipNodes = 8
let closestLocalNodes = p.routingTable.neighbours(
NodeId(contentId), k = 16, seenOnly = true)
var gossipNodes: seq[Node]
for node in closestLocalNodes:
let radius = p.radiusCache.get(node.id)
if radius.isSome():
if p.inRange(node.id, radius.unsafeGet(), contentId):
gossipNodes.add(node)
if gossipNodes.len >= 8: # use local nodes for gossip
portal_gossip_without_lookup.inc(labelValues = [$p.protocolId])
for node in gossipNodes[0..<min(gossipNodes.len, maxGossipNodes)]:
let req = OfferRequest(dst: node, kind: Direct, contentList: contentList)
await p.offerQueue.addLast(req)
else: # use looked up nodes for gossip
portal_gossip_with_lookup.inc(labelValues = [$p.protocolId])
let closestNodes = await p.lookup(NodeId(contentId))
for node in closestNodes[0..<min(closestNodes.len, maxGossipNodes)]:
# Note: opportunistically not checking if the radius of the node is known
# and thus if the node is in radius with the content. Reason is, these
# should really be the closest nodes in the DHT, and thus are most likely
# going to be in range of the requested content.
let req = OfferRequest(dst: node, kind: Direct, contentList: contentList)
await p.offerQueue.addLast(req)
proc adjustRadius(
p: PortalProtocol,
fractionOfDeletedContent: float64,
furthestElementInDbDistance: UInt256) =
if fractionOfDeletedContent == 0.0:
# even though pruning was triggered no content was deleted, it could happen
# in pathological case of really small database with really big values.
# log it as error as it should not happenn
error "Database pruning attempt resulted in no content deleted"
return
# we need to invert fraction as our Uin256 implementation does not support
# multiplication by float
let invertedFractionAsInt = int64(1.0 / fractionOfDeletedContent)
let scaledRadius = p.dataRadius div u256(invertedFractionAsInt)
# Chose larger value to avoid situation, where furthestElementInDbDistance
# is super close to local id, so local radius would end up too small
# to accept any more data to local database
# If scaledRadius radius will be larger it will still contain all elements
let newRadius = max(scaledRadius, furthestElementInDbDistance)
debug "Database pruned",
oldRadius = p.dataRadius,
newRadius = newRadius,
furthestDistanceInDb = furthestElementInDbDistance,
fractionOfDeletedContent = fractionOfDeletedContent
# both scaledRadius and furthestElementInDbDistance are smaller than current
# dataRadius, so the radius will constantly decrease through the node
# life time
p.dataRadius = newRadius
proc storeContent*(p: PortalProtocol, key: ContentId, content: openArray[byte]) =
# always re-check that key is in node range, to make sure that invariant that
# all keys in database are always in node range hold.
# TODO current silent assumption is that both contentDb and portalProtocol are
# using the same xor distance function
if p.inRange(key):
case p.radiusConfig.kind:
of Dynamic:
# In case of dynamic radius setting we obey storage limits and adjust
# radius to store network fraction corresponding to those storage limits.
let res = p.contentDB.put(key, content, p.baseProtocol.localNode.id)
if res.kind == DbPruned:
portal_pruning_counter.inc(labelValues = [$p.protocolId])
portal_pruning_deleted_elements.set(
res.numOfDeletedElements.int64,
labelValues = [$p.protocolId]
)
p.adjustRadius(
res.fractionOfDeletedContent,
res.furthestStoredElementDistance
)
of Static:
# If the config is set statically, radius is not adjusted, and is kept
# constant thorugh node life time, also database max size is disabled
# so we will effectivly store fraction of the network
p.contentDB.put(key, content)
proc seedTable*(p: PortalProtocol) =
## Seed the table with specifically provided Portal bootstrap nodes. These are
## nodes that must support the wire protocol for the specific content network.
# Note: We allow replacing the bootstrap nodes in the routing table as it is
# possible that some of these are not supporting the specific portal network.
# Other note: One could also pick nodes from the discv5 routing table to
# bootstrap the portal networks, however it would require a flag in the ENR to
# be added and there might be none in the routing table due to low amount of
# Portal nodes versus other nodes.
logScope:
protocolId = p.protocolId
for record in p.bootstrapRecords:
if p.addNode(record):
debug "Added bootstrap node", uri = toURI(record),
protocolId = p.protocolId
else:
error "Bootstrap node could not be added", uri = toURI(record),
protocolId = p.protocolId
proc populateTable(p: PortalProtocol) {.async.} =
## Do a set of initial lookups to quickly populate the table.
# start with a self target query (neighbour nodes)
logScope:
protocolId = p.protocolId
let selfQuery = await p.query(p.baseProtocol.localNode.id)
trace "Discovered nodes in self target query", nodes = selfQuery.len
for i in 0..<initialLookups:
let randomQuery = await p.queryRandom()
trace "Discovered nodes in random target query", nodes = randomQuery.len
debug "Total nodes in routing table after populate",
total = p.routingTable.len()
proc revalidateNode*(p: PortalProtocol, n: Node) {.async.} =
let pong = await p.ping(n)
if pong.isOK():
let res = pong.get()
if res.enrSeq > n.record.seqNum:
# Request new ENR
let nodesMessage = await p.findNodes(n, @[0'u16])
if nodesMessage.isOk():
let nodes = nodesMessage.get()
if nodes.len > 0: # Normally a node should only return 1 record actually
discard p.routingTable.addNode(nodes[0])
proc revalidateLoop(p: PortalProtocol) {.async.} =
## Loop which revalidates the nodes in the routing table by sending the ping
## message.
try:
while true:
await sleepAsync(milliseconds(p.baseProtocol.rng[].rand(revalidateMax)))
let n = p.routingTable.nodeToRevalidate()
if not n.isNil:
asyncSpawn p.revalidateNode(n)
except CancelledError:
trace "revalidateLoop canceled"
proc refreshLoop(p: PortalProtocol) {.async.} =
## Loop that refreshes the routing table by starting a random query in case
## no queries were done since `refreshInterval` or more.
## It also refreshes the majority address voted for via pong responses.
logScope:
protocolId = p.protocolId
try:
while true:
# TODO: It would be nicer and more secure if this was event based and/or
# steered from the routing table.
while p.routingTable.len() == 0:
p.seedTable()
await p.populateTable()
await sleepAsync(5.seconds)
let currentTime = now(chronos.Moment)
if currentTime > (p.lastLookup + refreshInterval):
let randomQuery = await p.queryRandom()
trace "Discovered nodes in random target query", nodes = randomQuery.len
debug "Total nodes in routing table", total = p.routingTable.len()
await sleepAsync(refreshInterval)
except CancelledError:
trace "refreshLoop canceled"
proc start*(p: PortalProtocol) =
p.refreshLoop = refreshLoop(p)
p.revalidateLoop = revalidateLoop(p)
for i in 0 ..< concurrentOffers:
p.offerWorkers.add(offerWorker(p))
proc stop*(p: PortalProtocol) =
if not p.revalidateLoop.isNil:
p.revalidateLoop.cancel()
if not p.refreshLoop.isNil:
p.refreshLoop.cancel()
for worker in p.offerWorkers:
worker.cancel()
p.offerWorkers = @[]
proc resolve*(p: PortalProtocol, id: NodeId): Future[Option[Node]] {.async.} =
## Resolve a `Node` based on provided `NodeId`.
##
## This will first look in the own routing table. If the node is known, it
## will try to contact if for newer information. If node is not known or it
## does not reply, a lookup is done to see if it can find a (newer) record of
## the node on the network.
if id == p.localNode.id:
return some(p.localNode)
let node = p.routingTable.getNode(id)
if node.isSome():
let nodesMessage = await p.findNodes(node.get(), @[0'u16])
# TODO: Handle failures better. E.g. stop on different failures than timeout
if nodesMessage.isOk() and nodesMessage[].len > 0:
return some(nodesMessage[][0])
let discovered = await p.lookup(id)
for n in discovered:
if n.id == id:
if node.isSome() and node.get().record.seqNum >= n.record.seqNum:
return node
else:
return some(n)
return node
proc resolveWithRadius*(p: PortalProtocol, id: NodeId): Future[Option[(Node, UInt256)]] {.async.} =
## Resolve a `Node` based on provided `NodeId`, also try to establish what
## is known radius of found node.
##
## This will first look in the own routing table. If the node is known, it
## will try to contact if for newer information. If node is not known or it
## does not reply, a lookup is done to see if it can find a (newer) record of
## the node on the network.
##
## If node is found, radius will be first checked in radius cache, it radius
## is not known node will be pinged to establish what is its current radius
##
let n = await p.resolve(id)
if n.isNone():
return none((Node, UInt256))
let node = n.unsafeGet()
let r = p.radiusCache.get(id)
if r.isSome():
return some((node, r.unsafeGet()))
let pongResult = await p.ping(node)
if pongResult.isOk():
let maybeRadius = p.radiusCache.get(id)
# After successful ping radius should already be in cache, but for the unlikely
# case that it is not, check it just to be sure.
# TODO: rafactor ping to return node radius.
if maybeRadius.isNone():
return none((Node, UInt256))
# If pong is successful, radius of the node should definitly be in local
# radius cache
return some((node, maybeRadius.unsafeGet()))
else:
return none((Node, UInt256))