mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-01-29 05:25:34 +00:00
df4a21c910
When lazily verifying state roots, we may end up with an entire state without roots that gets computed for the whole database - in the current design, that would result in hashes for the entire trie being held in memory. Since the hash depends only on the data in the vertex, we can store it directly at the top-most level derived from the verticies it depends on - be that memory or database - this makes the memory usage broadly linear with respect to the already-existing in-memory change set stored in the layers. It also ensures that if we have multiple forks in memory, hashes get cached in the correct layer maximising reuse between forks. The same layer numbering scheme as elsewhere is reused, where -2 is the backend, -1 is the balancer, then 0+ is the top of the stack and stack. A downside of this approach is that we create many small batches - a future improvement could be to collect all such writes in a single batch, though the memory profile of this approach should be examined first (where is the batch kept, exactly?).
165 lines
5.7 KiB
Nim
165 lines
5.7 KiB
Nim
# nimbus-eth1
|
|
# Copyright (c) 2023-2024 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or distributed
|
|
# except according to those terms.
|
|
|
|
{.push raises: [].}
|
|
|
|
import eth/common, results, ".."/[aristo_desc, aristo_get, aristo_layers, aristo_vid]
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private getters & setters
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc xPfx(vtx: VertexRef): NibblesBuf =
|
|
case vtx.vType
|
|
of Leaf: vtx.lPfx
|
|
of Branch: vtx.ePfx
|
|
|
|
# -----------
|
|
|
|
proc layersPutLeaf(
|
|
db: AristoDbRef, rvid: RootedVertexID, path: NibblesBuf, payload: LeafPayload
|
|
): VertexRef =
|
|
let vtx = VertexRef(vType: Leaf, lPfx: path, lData: payload)
|
|
db.layersPutVtx(rvid, vtx)
|
|
vtx
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc mergePayloadImpl*(
|
|
db: AristoDbRef, # Database, top layer
|
|
root: VertexID, # MPT state root
|
|
path: openArray[byte], # Leaf item to add to the database
|
|
payload: LeafPayload, # Payload value
|
|
): Result[VertexRef, AristoError] =
|
|
## Merge the argument `(root,path)` key-value-pair into the top level vertex
|
|
## table of the database `db`. The `path` argument is used to address the
|
|
## leaf vertex with the payload. It is stored or updated on the database
|
|
## accordingly.
|
|
##
|
|
var
|
|
path = NibblesBuf.fromBytes(path)
|
|
cur = root
|
|
touched: array[NibblesBuf.high + 1, VertexID]
|
|
pos = 0
|
|
(vtx, _) = db.getVtxRc((root, cur)).valueOr:
|
|
if error != GetVtxNotFound:
|
|
return err(error)
|
|
|
|
# We're at the root vertex and there is no data - this must be a fresh
|
|
# VertexID!
|
|
return ok db.layersPutLeaf((root, cur), path, payload)
|
|
|
|
template resetKeys() =
|
|
# Reset cached hashes of touched verticies
|
|
for i in 0 ..< pos:
|
|
db.layersResKey((root, touched[pos - i - 1]))
|
|
|
|
while path.len > 0:
|
|
# Clear existing merkle keys along the traversal path
|
|
touched[pos] = cur
|
|
pos += 1
|
|
|
|
let n = path.sharedPrefixLen(vtx.xPfx)
|
|
case vtx.vType
|
|
of Leaf:
|
|
let leafVtx =
|
|
if n == vtx.lPfx.len:
|
|
# Same path - replace the current vertex with a new payload
|
|
|
|
if vtx.lData == payload:
|
|
# TODO is this still needed? Higher levels should already be doing
|
|
# these checks
|
|
return err(MergeLeafPathCachedAlready)
|
|
|
|
if root == VertexID(1):
|
|
var payload = payload.dup()
|
|
# TODO can we avoid this hack? it feels like the caller should already
|
|
# have set an appropriate stoID - this "fixup" feels risky,
|
|
# specially from a caching point of view
|
|
payload.stoID = vtx.lData.stoID
|
|
db.layersPutLeaf((root, cur), path, payload)
|
|
else:
|
|
db.layersPutLeaf((root, cur), path, payload)
|
|
else:
|
|
# Turn leaf into a branch (or extension) then insert the two leaves
|
|
# into the branch
|
|
let branch = VertexRef(vType: Branch, ePfx: path.slice(0, n))
|
|
block: # Copy of existing leaf node, now one level deeper
|
|
let local = db.vidFetch()
|
|
branch.bVid[vtx.lPfx[n]] = local
|
|
discard db.layersPutLeaf((root, local), vtx.lPfx.slice(n + 1), vtx.lData)
|
|
|
|
let leafVtx = block: # Newly inserted leaf node
|
|
let local = db.vidFetch()
|
|
branch.bVid[path[n]] = local
|
|
db.layersPutLeaf((root, local), path.slice(n + 1), payload)
|
|
|
|
# Put the branch at the vid where the leaf was
|
|
db.layersPutVtx((root, cur), branch)
|
|
|
|
leafVtx
|
|
|
|
resetKeys()
|
|
return ok(leafVtx)
|
|
of Branch:
|
|
if vtx.ePfx.len == n:
|
|
# The existing branch is a prefix of the new entry
|
|
let
|
|
nibble = path[vtx.ePfx.len]
|
|
next = vtx.bVid[nibble]
|
|
|
|
if next.isValid:
|
|
cur = next
|
|
path = path.slice(n + 1)
|
|
(vtx, _) = ?db.getVtxRc((root, next))
|
|
else:
|
|
# There's no vertex at the branch point - insert the payload as a new
|
|
# leaf and update the existing branch
|
|
let
|
|
local = db.vidFetch()
|
|
leafVtx = db.layersPutLeaf((root, local), path.slice(n + 1), payload)
|
|
brDup = vtx.dup()
|
|
|
|
brDup.bVid[nibble] = local
|
|
db.layersPutVtx((root, cur), brDup)
|
|
|
|
resetKeys()
|
|
return ok(leafVtx)
|
|
else:
|
|
# Partial path match - we need to split the existing branch at
|
|
# the point of divergence, inserting a new branch
|
|
let branch = VertexRef(vType: Branch, ePfx: path.slice(0, n))
|
|
block: # Copy the existing vertex and add it to the new branch
|
|
let local = db.vidFetch()
|
|
branch.bVid[vtx.ePfx[n]] = local
|
|
|
|
db.layersPutVtx(
|
|
(root, local),
|
|
VertexRef(vType: Branch, ePfx: vtx.ePfx.slice(n + 1), bVid: vtx.bVid),
|
|
)
|
|
|
|
let leafVtx = block: # add the new entry
|
|
let local = db.vidFetch()
|
|
branch.bVid[path[n]] = local
|
|
db.layersPutLeaf((root, local), path.slice(n + 1), payload)
|
|
|
|
db.layersPutVtx((root, cur), branch)
|
|
|
|
resetKeys()
|
|
return ok(leafVtx)
|
|
|
|
err(MergeHikeFailed)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|