Jordan Hrycaj ce713d95fc
Aristo lazily delete larger subtrees (#2560)
* Extract sub-tree deletion functions into separate sub-modules

* Move/rename `aristo_desc.accLruSize` => `aristo_constants.ACC_LRU_SIZE`

* Lazily delete sub-trees

why:
  This gives some control of the memory used to keep the deleted vertices
  in the cached layers. For larger sub-trees, keys and vertices might be
  on the persistent backend to a large extend. This would pull an amount
  of extra information from the backend into the cached layer.

  For lazy deleting it is enough to remember sub-trees by a small set of
  (at most 16) sub-roots to be processed when storing persistent data.
  Marking the tree root deleted immediately allows to let most of the code
  base work as before.

* Comments and cosmetics

* No need to import all for `Aristo` here

* Kludge to make `chronicle` usage in sub-modules work with `fluffy`

why:
  That `fluffy` would not run with any logging in `core_deb` is a problem
  I have known for a while. Up to now, logging was only used for debugging.

  With the current `Aristo` PR, there are cases where logging might be
  wanted but this works only if `chronicles` runs without the
  `json[dynamic]` sinks.

  So this should be re-visited.

* More of a kludge
2024-08-14 08:54:44 +00:00

86 lines
3.0 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
import
std/tables,
eth/common,
".."/[aristo_desc, aristo_layers]
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
proc deltaMerge*(
upper: LayerRef; # Think of `top`, `nil` is ok
modUpperOk: bool; # May re-use/modify `upper`
lower: LayerRef; # Think of `balancer`, `nil` is ok
modLowerOk: bool; # May re-use/modify `lower`
): LayerRef =
## Merge argument `upper` into the `lower` filter instance.
##
## Note that the namimg `upper` and `lower` indicate that the filters are
## stacked and the database access is `upper -> lower -> backend`.
##
if lower.isNil:
# Degenerate case: `upper` is void
result = upper
elif upper.isNil:
# Degenerate case: `lower` is void
result = lower
elif modLowerOk:
# Can modify `lower` which is the prefered action mode but applies only
# in cases where the `lower` argument is not shared.
lower.vTop = upper.vTop
layersMergeOnto(upper, lower[])
result = lower
elif not modUpperOk:
# Cannot modify any argument layers.
result = LayerRef(
sTab: lower.sTab, # shallow copy (entries will not be modified)
kMap: lower.kMap,
delTree: lower.delTree,
accLeaves: lower.accLeaves,
stoLeaves: lower.stoLeaves,
vTop: upper.vTop)
layersMergeOnto(upper, result[])
else:
# Otherwise avoid copying some tables by modifying `upper`. This is not
# completely free as the merge direction changes to merging the `lower`
# layer up into the higher prioritised `upper` layer (note that the `lower`
# argument filter is read-only.) Here again, the `upper` argument must not
# be a shared layer/filter.
for (rvid,vtx) in lower.sTab.pairs:
if not upper.sTab.hasKey(rvid):
upper.sTab[rvid] = vtx
for (rvid,key) in lower.kMap.pairs:
if not upper.kMap.hasKey(rvid):
upper.kMap[rvid] = key
for rvid in lower.delTree:
upper.delTree.add rvid
for (accPath,leafVtx) in lower.accLeaves.pairs:
if not upper.accLeaves.hasKey(accPath):
upper.accLeaves[accPath] = leafVtx
for (mixPath,leafVtx) in lower.stoLeaves.pairs:
if not upper.stoLeaves.hasKey(mixPath):
upper.stoLeaves[mixPath] = leafVtx
result = upper
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------