mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-03-03 13:20:48 +00:00
* Simplify txFrame protocol, improve persist performance To prepare forked-layers for further surgery to avoid the nesting tax, the commit/rollback style of interacting must first be adjusted, since it does not provide a point in time where the frame is "done" and goes from being actively written to, to simply waiting to be persisted or discarded. A collateral benefit of this change is that the scheme removes some complexity from the process by moving the "last saved block number" into txframe along with the actual state changes thus reducing the risk that they go "out of sync" and removing the "commit" consolidation responsibility from ForkedChain. * commit/rollback become checkpoint/dispose - since these are pure in-memory constructs, there's less error handling and there's no real "rollback" involved - dispose better implies that the instance cannot be used and we can more aggressively clear the memory it uses * simplified block number handling that moves to become part of txFrame just like the data that the block number references * avoid reparenting step by replacing the base instead of keeping a singleton instance * persist builds the set of changes from the bottom which helps avoid moving changes in the top layers through each ancestor level of the frame stack * when using an in-memory database in tests, allow the instance to be passed around to enable testing persist and reload logic
291 lines
9.4 KiB
Nim
291 lines
9.4 KiB
Nim
# nimbus-eth1
|
|
# Copyright (c) 2023-2025 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or distributed
|
|
# except according to those terms.
|
|
|
|
## Aristo DB -- Patricia Trie structural data types
|
|
## ================================================
|
|
##
|
|
|
|
{.push raises: [].}
|
|
|
|
import
|
|
std/[hashes as std_hashes, tables],
|
|
stint,
|
|
eth/common/[accounts, base, hashes],
|
|
./desc_identifiers
|
|
|
|
export stint, tables, accounts, base, hashes
|
|
|
|
type
|
|
LeafTiePayload* = object
|
|
## Generalised key-value pair for a sub-trie. The main trie is the
|
|
## sub-trie with `root=VertexID(1)`.
|
|
leafTie*: LeafTie ## Full `Patricia Trie` path root-to-leaf
|
|
payload*: LeafPayload ## Leaf data payload (see below)
|
|
|
|
VertexType* = enum
|
|
## Type of `Aristo Trie` vertex
|
|
Leaf
|
|
Branch
|
|
|
|
AristoAccount* = object
|
|
## Application relevant part of an Ethereum account. Note that the storage
|
|
## data/tree reference is not part of the account (see `LeafPayload` below.)
|
|
nonce*: AccountNonce ## Some `uint64` type
|
|
balance*: UInt256
|
|
codeHash*: Hash32
|
|
|
|
PayloadType* = enum
|
|
## Type of leaf data.
|
|
AccountData ## `Aristo account` with vertex IDs links
|
|
StoData ## Slot storage data
|
|
|
|
StorageID* = tuple
|
|
## Once a storage tree is allocated, its root vertex ID is registered in
|
|
## the leaf payload of an acoount. After subsequent storage tree deletion
|
|
## the root vertex ID will be kept in the leaf payload for re-use but set
|
|
## disabled (`.isValid` = `false`).
|
|
isValid: bool ## See also `isValid()` for `VertexID`
|
|
vid: VertexID ## Storage root vertex ID
|
|
|
|
LeafPayload* = object
|
|
## The payload type depends on the sub-tree used. The `VertexID(1)` rooted
|
|
## sub-tree only has `AccountData` type payload, stoID-based have StoData
|
|
case pType*: PayloadType
|
|
of AccountData:
|
|
account*: AristoAccount
|
|
stoID*: StorageID ## Storage vertex ID (if any)
|
|
of StoData:
|
|
stoData*: UInt256
|
|
|
|
VertexRef* = ref object
|
|
## Vertex for building a hexary Patricia or Merkle Patricia Trie
|
|
pfx*: NibblesBuf
|
|
## Portion of path segment - extension nodes are branch nodes with
|
|
## non-empty prefix
|
|
case vType*: VertexType
|
|
of Leaf:
|
|
lData*: LeafPayload ## Reference to data payload
|
|
of Branch:
|
|
startVid*: VertexID
|
|
used*: uint16
|
|
|
|
NodeRef* = ref object of RootRef
|
|
## Combined record for a *traditional* ``Merkle Patricia Tree` node merged
|
|
## with a structural `VertexRef` type object.
|
|
vtx*: VertexRef
|
|
key*: array[16,HashKey] ## Merkle hash/es for vertices
|
|
|
|
# ----------------------
|
|
|
|
VidVtxPair* = object
|
|
## Handy helper structure
|
|
vid*: VertexID ## Table lookup vertex ID (if any)
|
|
vtx*: VertexRef ## Reference to vertex
|
|
|
|
SavedState* = object
|
|
## Last saved state
|
|
key*: Hash32 ## Some state hash (if any)
|
|
serial*: uint64 ## Generic identifier from application
|
|
|
|
LayerRef* = ref Layer
|
|
Layer* = object
|
|
## Delta layers are stacked implying a tables hierarchy. Table entries on
|
|
## a higher level take precedence over lower layer table entries. So an
|
|
## existing key-value table entry of a layer on top supersedes same key
|
|
## entries on all lower layers. A missing entry on a higher layer indicates
|
|
## that the key-value pair might be fond on some lower layer.
|
|
##
|
|
## A zero value (`nil`, empty hash etc.) is considered am missing key-value
|
|
## pair. Tables on the `LayerDelta` may have stray zero key-value pairs for
|
|
## missing entries due to repeated transactions while adding and deleting
|
|
## entries. There is no need to purge redundant zero entries.
|
|
##
|
|
## As for `kMap[]` entries, there might be a zero value entriy relating
|
|
## (i.e. indexed by the same vertex ID) to an `sMap[]` non-zero value entry
|
|
## (of the same layer or a lower layer whatever comes first.) This entry
|
|
## is kept as a reminder that the hash value of the `kMap[]` entry needs
|
|
## to be re-compiled.
|
|
##
|
|
## The reasoning behind the above scenario is that every vertex held on the
|
|
## `sTab[]` tables must correspond to a hash entry held on the `kMap[]`
|
|
## tables. So a corresponding zero value or missing entry produces an
|
|
## inconsistent state that must be resolved.
|
|
##
|
|
sTab*: Table[RootedVertexID,VertexRef] ## Structural vertex table
|
|
kMap*: Table[RootedVertexID,HashKey] ## Merkle hash key mapping
|
|
vTop*: VertexID ## Last used vertex ID
|
|
|
|
accLeaves*: Table[Hash32, VertexRef] ## Account path -> VertexRef
|
|
stoLeaves*: Table[Hash32, VertexRef] ## Storage path -> VertexRef
|
|
|
|
GetVtxFlag* = enum
|
|
PeekCache
|
|
## Peek into, but don't update cache - useful on work loads that are
|
|
## unfriendly to caches
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public helpers (misc)
|
|
# ------------------------------------------------------------------------------
|
|
|
|
func bVid*(vtx: VertexRef, nibble: uint8): VertexID =
|
|
if (vtx.used and (1'u16 shl nibble)) > 0:
|
|
VertexID(uint64(vtx.startVid) + nibble)
|
|
else:
|
|
default(VertexID)
|
|
|
|
func setUsed*(vtx: VertexRef, nibble: uint8, used: static bool): VertexID =
|
|
vtx.used =
|
|
when used:
|
|
vtx.used or (1'u16 shl nibble)
|
|
else:
|
|
vtx.used and (not (1'u16 shl nibble))
|
|
vtx.bVid(nibble)
|
|
|
|
func hash*(node: NodeRef): Hash =
|
|
## Table/KeyedQueue/HashSet mixin
|
|
cast[pointer](node).hash
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public helpers: `NodeRef` and `LeafPayload`
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc `==`*(a, b: LeafPayload): bool =
|
|
## Beware, potential deep comparison
|
|
if unsafeAddr(a) != unsafeAddr(b):
|
|
if a.pType != b.pType:
|
|
return false
|
|
case a.pType:
|
|
of AccountData:
|
|
if a.account != b.account or
|
|
a.stoID != b.stoID:
|
|
return false
|
|
of StoData:
|
|
if a.stoData != b.stoData:
|
|
return false
|
|
true
|
|
|
|
proc `==`*(a, b: VertexRef): bool =
|
|
## Beware, potential deep comparison
|
|
if a.isNil:
|
|
return b.isNil
|
|
if b.isNil:
|
|
return false
|
|
if unsafeAddr(a[]) != unsafeAddr(b[]):
|
|
if a.vType != b.vType:
|
|
return false
|
|
case a.vType:
|
|
of Leaf:
|
|
if a.pfx != b.pfx or a.lData != b.lData:
|
|
return false
|
|
of Branch:
|
|
if a.pfx != b.pfx or a.startVid != b.startVid or a.used != b.used:
|
|
return false
|
|
true
|
|
|
|
iterator pairs*(vtx: VertexRef): tuple[nibble: uint8, vid: VertexID] =
|
|
## Iterates over the sub-vids of a branch (does nothing for leaves)
|
|
case vtx.vType:
|
|
of Leaf:
|
|
discard
|
|
of Branch:
|
|
for n in 0'u8 .. 15'u8:
|
|
if (vtx.used and (1'u16 shl n)) > 0:
|
|
yield (n, VertexID(uint64(vtx.startVid) + n))
|
|
|
|
iterator allPairs*(vtx: VertexRef): tuple[nibble: uint8, vid: VertexID] =
|
|
## Iterates over the sub-vids of a branch (does nothing for leaves) including
|
|
## currently unset nodes
|
|
case vtx.vType:
|
|
of Leaf:
|
|
discard
|
|
of Branch:
|
|
for n in 0'u8 .. 15'u8:
|
|
if (vtx.used and (1'u16 shl n)) > 0:
|
|
yield (n, VertexID(uint64(vtx.startVid) + n))
|
|
else:
|
|
yield (n, default(VertexID))
|
|
|
|
proc `==`*(a, b: NodeRef): bool =
|
|
## Beware, potential deep comparison
|
|
if a.vtx != b.vtx:
|
|
return false
|
|
case a.vtx.vType:
|
|
of Branch:
|
|
for n in 0'u8..15'u8:
|
|
if a.vtx.bVid(n) != 0.VertexID or b.vtx.bVid(n) != 0.VertexID:
|
|
if a.key[n] != b.key[n]:
|
|
return false
|
|
else:
|
|
discard
|
|
true
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public helpers, miscellaneous functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
func dup*(pld: LeafPayload): LeafPayload =
|
|
## Duplicate payload.
|
|
case pld.pType:
|
|
of AccountData:
|
|
LeafPayload(
|
|
pType: AccountData,
|
|
account: pld.account,
|
|
stoID: pld.stoID)
|
|
of StoData:
|
|
LeafPayload(
|
|
pType: StoData,
|
|
stoData: pld.stoData
|
|
)
|
|
|
|
func dup*(vtx: VertexRef): VertexRef =
|
|
## Duplicate vertex.
|
|
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
|
|
if vtx.isNil:
|
|
VertexRef(nil)
|
|
else:
|
|
case vtx.vType:
|
|
of Leaf:
|
|
VertexRef(
|
|
vType: Leaf,
|
|
pfx: vtx.pfx,
|
|
lData: vtx.lData.dup)
|
|
of Branch:
|
|
VertexRef(
|
|
vType: Branch,
|
|
pfx: vtx.pfx,
|
|
startVid: vtx.startVid,
|
|
used: vtx.used)
|
|
|
|
func dup*(node: NodeRef): NodeRef =
|
|
## Duplicate node.
|
|
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
|
|
if node.isNil:
|
|
NodeRef(nil)
|
|
else:
|
|
NodeRef(
|
|
vtx: node.vtx.dup(),
|
|
key: node.key)
|
|
|
|
func dup*(wp: VidVtxPair): VidVtxPair =
|
|
## Safe copy of `wp` argument
|
|
VidVtxPair(
|
|
vid: wp.vid,
|
|
vtx: wp.vtx.dup)
|
|
|
|
# ---------------
|
|
|
|
func to*(node: NodeRef; T: type VertexRef): T =
|
|
## Extract a copy of the `VertexRef` part from a `NodeRef`.
|
|
node.VertexRef.dup
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|