mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-01-10 04:15:54 +00:00
c0d580715e
* Re-model persistent database access why: Storage slots healing just run on the wrong sub-trie (i.e. the wrong key mapping). So get/put and bulk functions now use the definitions in `snapdb_desc` (earlier there were some shortcuts for `get()`.) * Fixes: missing return code, typo, redundant imports etc. * Remove obsolete debugging directives from `worker_desc` module * Correct failing unit tests for storage slots trie inspection why: Some pathological cases for the extended tests do not produce any hexary trie data. This is rightly detected by the trie inspection and the result checks needed to adjusted.
283 lines
9.2 KiB
Nim
283 lines
9.2 KiB
Nim
# Nimbus
|
|
# Copyright (c) 2018-2021 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or
|
|
# distributed except according to those terms.
|
|
|
|
import
|
|
std/[math, sequtils, hashes],
|
|
eth/common/eth_types_rlp,
|
|
stew/[byteutils, interval_set],
|
|
stint,
|
|
../../constants,
|
|
../protocol,
|
|
../types
|
|
|
|
{.push raises: [Defect].}
|
|
|
|
type
|
|
ByteArray32* = array[32,byte]
|
|
## Used for 32 byte database keys
|
|
|
|
NodeKey* = distinct ByteArray32
|
|
## Hash key without the hash wrapper (as opposed to `NodeTag` which is a
|
|
## number)
|
|
|
|
NodeTag* = distinct UInt256
|
|
## Trie leaf item, account hash etc.
|
|
|
|
NodeTagRange* = Interval[NodeTag,UInt256]
|
|
## Interval `[minPt,maxPt]` of` NodeTag` elements, can be managed in an
|
|
## `IntervalSet` data type.
|
|
|
|
NodeTagRangeSet* = IntervalSetRef[NodeTag,UInt256]
|
|
## Managed structure to handle non-adjacent `NodeTagRange` intervals
|
|
|
|
PackedAccountRange* = object
|
|
## Re-packed version of `SnapAccountRange`. The reason why repacking is
|
|
## needed is that the `snap/1` protocol uses another RLP encoding than is
|
|
## used for storing in the database. So the `PackedAccount` is `BaseDB`
|
|
## trie compatible.
|
|
accounts*: seq[PackedAccount] ## List of re-packed accounts data
|
|
proof*: SnapAccountProof ## Boundary proofs
|
|
|
|
PackedAccount* = object
|
|
## In fact, the `snap/1` driver returns the `Account` structure which is
|
|
## unwanted overhead, gere.
|
|
accHash*: Hash256
|
|
accBlob*: Blob
|
|
|
|
AccountSlotsHeader* = object
|
|
## Storage root header
|
|
accHash*: Hash256 ## Owner account, maybe unnecessary
|
|
storageRoot*: Hash256 ## Start of storage tree
|
|
subRange*: Option[NodeTagRange] ## Sub-range of slot range covered
|
|
|
|
AccountStorageRange* = object
|
|
## List of storage descriptors, the last `AccountSlots` storage data might
|
|
## be incomplete and tthe `proof` is needed for proving validity.
|
|
storages*: seq[AccountSlots] ## List of accounts and storage data
|
|
proof*: SnapStorageProof ## Boundary proofs for last entry
|
|
|
|
AccountSlots* = object
|
|
## Account storage descriptor
|
|
account*: AccountSlotsHeader
|
|
data*: seq[SnapStorage]
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc to*(tag: NodeTag; T: type Hash256): T =
|
|
## Convert to serialised equivalent
|
|
result.data = tag.UInt256.toBytesBE
|
|
|
|
proc to*(key: NodeKey; T: type NodeTag): T =
|
|
## Convert from serialised equivalent
|
|
UInt256.fromBytesBE(key.ByteArray32).T
|
|
|
|
proc to*(key: Hash256; T: type NodeTag): T =
|
|
## Syntactic sugar
|
|
key.data.NodeKey.to(T)
|
|
|
|
proc to*(tag: NodeTag; T: type NodeKey): T =
|
|
## Syntactic sugar
|
|
tag.UInt256.toBytesBE.T
|
|
|
|
proc to*(hash: Hash256; T: type NodeKey): T =
|
|
## Syntactic sugar
|
|
hash.data.NodeKey
|
|
|
|
proc to*(key: NodeKey; T: type Hash256): T =
|
|
## Syntactic sugar
|
|
T(data: key.ByteArray32)
|
|
|
|
proc to*(key: NodeKey; T: type Blob): T =
|
|
## Syntactic sugar
|
|
key.ByteArray32.toSeq
|
|
|
|
proc to*(n: SomeUnsignedInt|UInt256; T: type NodeTag): T =
|
|
## Syntactic sugar
|
|
n.u256.T
|
|
|
|
|
|
proc hash*(a: NodeKey): Hash =
|
|
## Table/KeyedQueue mixin
|
|
a.ByteArray32.hash
|
|
|
|
proc `==`*(a, b: NodeKey): bool =
|
|
## Table/KeyedQueue mixin
|
|
a.ByteArray32 == b.ByteArray32
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public constructors
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc init*(key: var NodeKey; data: openArray[byte]): bool =
|
|
## Import argument `data` into `key` which must have length either `32`, or
|
|
## `0`. The latter case is equivalent to an all zero byte array of size `32`.
|
|
if data.len == 32:
|
|
(addr key.ByteArray32[0]).copyMem(unsafeAddr data[0], data.len)
|
|
return true
|
|
elif data.len == 0:
|
|
key.reset
|
|
return true
|
|
|
|
proc init*(tag: var NodeTag; data: openArray[byte]): bool =
|
|
## Similar to `init(key: var NodeHash; .)`.
|
|
var key: NodeKey
|
|
if key.init(data):
|
|
tag = key.to(NodeTag)
|
|
return true
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public rlp support
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc read*(rlp: var Rlp, T: type NodeTag): T
|
|
{.gcsafe, raises: [Defect,RlpError].} =
|
|
rlp.read(Hash256).to(T)
|
|
|
|
proc append*(writer: var RlpWriter, nid: NodeTag) =
|
|
writer.append(nid.to(Hash256))
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public `NodeTag` and `NodeTagRange` functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc u256*(lp: NodeTag): UInt256 = lp.UInt256
|
|
proc low*(T: type NodeTag): T = low(UInt256).T
|
|
proc high*(T: type NodeTag): T = high(UInt256).T
|
|
|
|
proc `+`*(a: NodeTag; b: UInt256): NodeTag = (a.u256+b).NodeTag
|
|
proc `-`*(a: NodeTag; b: UInt256): NodeTag = (a.u256-b).NodeTag
|
|
proc `-`*(a, b: NodeTag): UInt256 = (a.u256 - b.u256)
|
|
|
|
proc `==`*(a, b: NodeTag): bool = a.u256 == b.u256
|
|
proc `<=`*(a, b: NodeTag): bool = a.u256 <= b.u256
|
|
proc `<`*(a, b: NodeTag): bool = a.u256 < b.u256
|
|
|
|
proc cmp*(x, y: NodeTag): int = cmp(x.UInt256, y.UInt256)
|
|
|
|
proc hash*(a: NodeTag): Hash =
|
|
## Mixin for `Table` or `keyedQueue`
|
|
a.to(Hash256).data.hash
|
|
|
|
proc digestTo*(data: Blob; T: type NodeTag): T =
|
|
## Hash the `data` argument
|
|
keccakHash(data).to(T)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions: `NodeTagRange` helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc isEmpty*(lrs: NodeTagRangeSet): bool =
|
|
## Returns `true` if the argument set `lrs` of intervals is empty
|
|
lrs.total == 0 and lrs.chunks == 0
|
|
|
|
proc isEmpty*(lrs: openArray[NodeTagRangeSet]): bool =
|
|
## Variant of `isEmpty()` where intervals are distributed across several
|
|
## sets.
|
|
for ivSet in lrs:
|
|
if 0 < ivSet.total or 0 < ivSet.chunks:
|
|
return false
|
|
true
|
|
|
|
proc isFull*(lrs: NodeTagRangeSet): bool =
|
|
## Returns `true` if the argument set `lrs` contains of the single
|
|
## interval [low(NodeTag),high(NodeTag)].
|
|
lrs.total == 0 and 0 < lrs.chunks
|
|
|
|
|
|
proc emptyFactor*(lrs: NodeTagRangeSet): float =
|
|
## Relative uncovered total, i.e. `#points-not-covered / 2^256` to be used
|
|
## in statistics or triggers.
|
|
if 0 < lrs.total:
|
|
((high(NodeTag) - lrs.total).u256 + 1).to(float) / (2.0^256)
|
|
elif lrs.chunks == 0:
|
|
1.0 # `total` represents the residue class `mod 2^256` from `0`..`(2^256-1)`
|
|
else:
|
|
0.0 # number of points in `lrs` is `2^256 + 1`
|
|
|
|
proc emptyFactor*(lrs: openArray[NodeTagRangeSet]): float =
|
|
## Variant of `emptyFactor()` where intervals are distributed across several
|
|
## sets. This function makes sense only if the interval sets are mutually
|
|
## disjunct.
|
|
var accu: NodeTag
|
|
for ivSet in lrs:
|
|
if 0 < ivSet.total:
|
|
if high(NodeTag) - ivSet.total < accu:
|
|
return 0.0
|
|
accu = accu + ivSet.total
|
|
elif ivSet.chunks == 0:
|
|
discard
|
|
else: # number of points in `ivSet` is `2^256 + 1`
|
|
return 0.0
|
|
if accu == 0.to(NodeTag):
|
|
return 1.0
|
|
((high(NodeTag) - accu).u256 + 1).to(float) / (2.0^256)
|
|
|
|
|
|
proc fullFactor*(lrs: NodeTagRangeSet): float =
|
|
## Relative covered total, i.e. `#points-covered / 2^256` to be used
|
|
## in statistics or triggers
|
|
if 0 < lrs.total:
|
|
lrs.total.u256.to(float) / (2.0^256)
|
|
elif lrs.chunks == 0:
|
|
0.0 # `total` represents the residue class `mod 2^256` from `0`..`(2^256-1)`
|
|
else:
|
|
1.0 # number of points in `lrs` is `2^256 + 1`
|
|
|
|
proc fullFactor*(lrs: openArray[NodeTagRangeSet]): float =
|
|
## Variant of `fullFactor()` where intervals are distributed across several
|
|
## sets. This function makes sense only if the interval sets are mutually
|
|
## disjunct.
|
|
var accu: NodeTag
|
|
for ivSet in lrs:
|
|
if 0 < ivSet.total:
|
|
if high(NodeTag) - ivSet.total < accu:
|
|
return 1.0
|
|
accu = accu + ivSet.total
|
|
elif ivSet.chunks == 0:
|
|
discard
|
|
else: # number of points in `ivSet` is `2^256 + 1`
|
|
return 1.0
|
|
if accu == 0.to(NodeTag):
|
|
return 0.0
|
|
accu.u256.to(float) / (2.0^256)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions: printing & pretty printing
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc `$`*(nt: NodeTag): string =
|
|
if nt == high(NodeTag):
|
|
"high(NodeTag)"
|
|
elif nt == 0.u256.NodeTag:
|
|
"0"
|
|
else:
|
|
nt.to(Hash256).data.toHex
|
|
|
|
proc leafRangePp*(a, b: NodeTag): string =
|
|
## Needed for macro generated DSL files like `snap.nim` because the
|
|
## `distinct` flavour of `NodeTag` is discarded there.
|
|
result = "[" & $a
|
|
if a != b:
|
|
result &= ',' & $b
|
|
result &= "]"
|
|
|
|
proc `$`*(a, b: NodeTag): string =
|
|
## Prettyfied prototype
|
|
leafRangePp(a,b)
|
|
|
|
proc `$`*(iv: NodeTagRange): string =
|
|
leafRangePp(iv.minPt, iv.maxPt)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|