nimbus-eth1/tests/test_op_memory_lazy.nim
Adam Spitz e040e2671a
Added basic async capabilities for vm2. (#1260)
* Added basic async capabilities for vm2.

This is a whole new Git branch, not the same one as last time
(https://github.com/status-im/nimbus-eth1/pull/1250) - there wasn't
much worth salvaging. Main differences:

I didn't do the "each opcode has to specify an async handler" junk
that I put in last time. Instead, in oph_memory.nim you can see
sloadOp calling asyncChainTo and passing in an async operation.
That async operation is then run by the execCallOrCreate (or
asyncExecCallOrCreate) code in interpreter_dispatch.nim.

In the test code, the (previously existing) macro called "assembler"
now allows you to add a section called "initialStorage", specifying
fake data to be used by the EVM computation run by that test. (In
the long run we'll obviously want to write tests that for-real use
the JSON-RPC API to asynchronously fetch data; for now, this was
just an expedient way to write a basic unit test that exercises the
async-EVM code pathway.)

There's also a new macro called "concurrentAssemblers" that allows
you to write a test that runs multiple assemblers concurrently (and
then waits for them all to finish). There's one example test using
this, in test_op_memory_lazy.nim, though you can't actually see it
doing so unless you uncomment some echo statements in
async_operations.nim (in which case you can see the two concurrently
running EVM computations each printing out what they're doing, and
you'll see that they interleave).

A question: is it possible to make EVMC work asynchronously? (For
now, this code compiles and "make test" passes even if ENABLE_EVMC
is turned on, but it doesn't actually work asynchronously, it just
falls back on doing the usual synchronous EVMC thing. See
FIXME-asyncAndEvmc.)

* Moved the AsyncOperationFactory to the BaseVMState object.

* Made the AsyncOperationFactory into a table of fn pointers.

Also ditched the plain-data Vm2AsyncOperation type; it wasn't
really serving much purpose. Instead, the pendingAsyncOperation
field directly contains the Future.

* Removed the hasStorage idea.

It's not the right solution to the "how do we know whether we
still need to fetch the storage value or not?" problem. I
haven't implemented the right solution yet, but at least
we're better off not putting in a wrong one.

* Added/modified/removed some comments.

(Based on feedback on the PR.)

* Removed the waitFor from execCallOrCreate.

There was some back-and-forth in the PR regarding whether nested
waitFor calls are acceptable:

https://github.com/status-im/nimbus-eth1/pull/1260#discussion_r998587449

The eventual decision was to just change the waitFor to a doAssert
(since we probably won't want this extra functionality when running
synchronously anyway) to make sure that the Future is already
finished.
2022-11-01 11:35:46 -04:00

75 lines
1.8 KiB
Nim

import macro_assembler, unittest2, macros, strutils
proc opMemoryLazyMain*() =
suite "Lazy Loading With Memory Opcodes":
let (vmState, chainDB) = initDatabase()
assembler: # SLOAD OP with (fake) lazy data fetching
title: "LAZY_SLOAD_1"
initialStorage:
"0xAA": "0x42"
code:
PUSH1 "0xAA"
SLOAD
PUSH1 "0x01"
ADD
PUSH1 "0xAA"
SSTORE
PUSH1 "0xAA"
SLOAD
storage:
"0xAA": "0x43"
stack:
"0x0000000000000000000000000000000000000000000000000000000000000043"
let (vmState1, chainDB1) = initDatabase()
let (vmState2, chainDB2) = initDatabase()
concurrentAssemblers:
title: "Concurrent Assemblers"
assemblers:
asm1:
title: "asm1"
vmState: vmState1
chainDB: chainDB1
initialStorage:
"0xBB": "0x42"
"0xCC": "0x20"
code:
PUSH1 "0xBB"
SLOAD
PUSH1 "0xCC"
SLOAD
ADD
PUSH1 "0xBB"
SSTORE
PUSH1 "0xBB"
SLOAD
storage:
"0xBB": "0x62"
"0xCC": "0x20"
stack: "0x0000000000000000000000000000000000000000000000000000000000000062"
asm2:
title: "asm2"
vmState: vmState2
chainDB: chainDB2
initialStorage:
"0xDD": "0x30"
"0xEE": "0x20"
code:
PUSH1 "0xDD"
SLOAD
PUSH1 "0xEE"
SLOAD
ADD
PUSH1 "0xEE"
SSTORE
PUSH1 "0xEE"
SLOAD
storage:
"0xDD": "0x30"
"0xEE": "0x50"
stack: "0x0000000000000000000000000000000000000000000000000000000000000050"
when isMainModule:
opMemoryLazyMain()