mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-01-24 19:19:21 +00:00
b793f0de8d
* Redefine `seq[Blob]` => `seq[SnapProof]` for `snap/1` protocol why: Proof nodes are traded as `Blob` type items rather than Nim objects. So the RLP transcoder must not extra wrap proofs which are of type seq[Blob]. Without custom encoding one would produce a `list(blob(item1), blob(item2) ..)` instead of `list(item1, item2 ..)`. * Limit leaf extractor by RLP size rather than number of items why: To be used serving `snap/1` requests, the result of function `hexaryRangeLeafsProof()` is limited by the maximal space needed to serialise the result which will be part of the `snap/1` repsonse. * Let the range extractor `hexaryRangeLeafsProof()` return RLP list sizes why: When collecting accounts, the size oft the accounts list when encoded as RLP is continually updated. So the summed up value is available anyway. For the proof nodes list, there are not many (~ 10) so summing up is not expensive here.
354 lines
11 KiB
Nim
354 lines
11 KiB
Nim
# Nimbus
|
|
# Copyright (c) 2018-2021 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or
|
|
# distributed except according to those terms.
|
|
|
|
{.push raises: [].}
|
|
|
|
import
|
|
std/[math, sequtils, strutils, hashes],
|
|
eth/common,
|
|
stew/[byteutils, interval_set],
|
|
stint,
|
|
../../constants,
|
|
../protocol,
|
|
../types
|
|
|
|
type
|
|
ByteArray32* = array[32,byte]
|
|
## Used for 32 byte database keys
|
|
|
|
NodeKey* = distinct ByteArray32
|
|
## Hash key without the hash wrapper (as opposed to `NodeTag` which is a
|
|
## number.)
|
|
|
|
NodeTag* = distinct UInt256
|
|
## Trie leaf item, account hash etc. This data type is a representation
|
|
## for a `NodeKey` geared up for arithmetic and comparing keys.
|
|
|
|
NodeTagRange* = Interval[NodeTag,UInt256]
|
|
## Interval `[minPt,maxPt]` of` NodeTag` elements, can be managed in an
|
|
## `IntervalSet` data type.
|
|
|
|
NodeTagRangeSet* = IntervalSetRef[NodeTag,UInt256]
|
|
## Managed structure to handle non-adjacent `NodeTagRange` intervals
|
|
|
|
NodeSpecs* = object
|
|
## Multi purpose descriptor for a hexary trie node:
|
|
## * Missing node specs. If the `data` argument is empty, the `partialPath`
|
|
## refers to a missoing node entry. The `nodeKey` is another way of
|
|
## writing the node hash and used to verify that a potential data `Blob`
|
|
## is acceptable as node data.
|
|
## * Node data. If the `data` argument is non-empty, the `partialPath`
|
|
## fields can/will be used as function argument for various functions
|
|
## when healing.
|
|
partialPath*: Blob ## Compact encoded partial path nibbles
|
|
nodeKey*: NodeKey ## Derived from node hash
|
|
data*: Blob ## Node data (might not be present)
|
|
|
|
PackedAccountRange* = object
|
|
## Re-packed version of `SnapAccountRange`. The reason why repacking is
|
|
## needed is that the `snap/1` protocol uses another RLP encoding than is
|
|
## used for storing in the database. So the `PackedAccount` is `BaseDB`
|
|
## trie compatible.
|
|
accounts*: seq[PackedAccount] ## List of re-packed accounts data
|
|
proof*: seq[SnapProof] ## Boundary proofs
|
|
|
|
PackedAccount* = object
|
|
## In fact, the `snap/1` driver returns the `Account` structure which is
|
|
## unwanted overhead, here.
|
|
accKey*: NodeKey
|
|
accBlob*: Blob
|
|
|
|
AccountSlotsHeader* = object
|
|
## Storage root header
|
|
accKey*: NodeKey ## Owner account, maybe unnecessary
|
|
storageRoot*: Hash256 ## Start of storage tree
|
|
subRange*: Option[NodeTagRange] ## Sub-range of slot range covered
|
|
|
|
AccountStorageRange* = object
|
|
## List of storage descriptors, the last `AccountSlots` storage data might
|
|
## be incomplete and the `proof` is needed for proving validity.
|
|
storages*: seq[AccountSlots] ## List of accounts and storage data
|
|
proof*: seq[SnapProof] ## Boundary proofs for last entry
|
|
base*: NodeTag ## Lower limit for last entry w/proof
|
|
|
|
AccountSlots* = object
|
|
## Account storage descriptor
|
|
account*: AccountSlotsHeader
|
|
data*: seq[SnapStorage]
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc to*(tag: NodeTag; T: type Hash256): T =
|
|
## Convert to serialised equivalent
|
|
result.data = tag.UInt256.toBytesBE
|
|
|
|
proc to*(key: NodeKey; T: type NodeTag): T =
|
|
## Convert from serialised equivalent
|
|
UInt256.fromBytesBE(key.ByteArray32).T
|
|
|
|
proc to*(key: Hash256; T: type NodeTag): T =
|
|
## Syntactic sugar
|
|
key.data.NodeKey.to(T)
|
|
|
|
proc to*(tag: NodeTag; T: type NodeKey): T =
|
|
## Syntactic sugar
|
|
tag.UInt256.toBytesBE.T
|
|
|
|
proc to*(hash: Hash256; T: type NodeKey): T =
|
|
## Syntactic sugar
|
|
hash.data.NodeKey
|
|
|
|
proc to*(key: NodeKey; T: type Hash256): T =
|
|
## Syntactic sugar
|
|
T(data: key.ByteArray32)
|
|
|
|
proc to*(key: NodeKey; T: type Blob): T =
|
|
## Syntactic sugar
|
|
key.ByteArray32.toSeq
|
|
|
|
proc to*(n: SomeUnsignedInt|UInt256; T: type NodeTag): T =
|
|
## Syntactic sugar
|
|
n.u256.T
|
|
|
|
proc digestTo*(data: Blob; T: type NodeKey): T =
|
|
keccakHash(data).data.T
|
|
|
|
|
|
proc hash*(a: NodeKey): Hash =
|
|
## Table/KeyedQueue mixin
|
|
a.ByteArray32.hash
|
|
|
|
proc `==`*(a, b: NodeKey): bool =
|
|
## Table/KeyedQueue mixin
|
|
a.ByteArray32 == b.ByteArray32
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public constructors
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc init*(key: var NodeKey; data: openArray[byte]): bool =
|
|
## Import argument `data` into `key` which must have length either `32`, or
|
|
## `0`. The latter case is equivalent to an all zero byte array of size `32`.
|
|
if data.len == 32:
|
|
(addr key.ByteArray32[0]).copyMem(unsafeAddr data[0], data.len)
|
|
return true
|
|
elif data.len == 0:
|
|
key.reset
|
|
return true
|
|
|
|
proc init*(tag: var NodeTag; data: openArray[byte]): bool =
|
|
## Similar to `init(key: var NodeHash; .)`.
|
|
var key: NodeKey
|
|
if key.init(data):
|
|
tag = key.to(NodeTag)
|
|
return true
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public rlp support
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc read*[T: NodeTag|NodeKey](rlp: var Rlp, W: type T): T
|
|
{.gcsafe, raises: [RlpError].} =
|
|
rlp.read(Hash256).to(T)
|
|
|
|
proc append*(writer: var RlpWriter, val: NodeTag|NodeKey) =
|
|
writer.append(val.to(Hash256))
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public `NodeTag` and `NodeTagRange` functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc u256*(lp: NodeTag): UInt256 = lp.UInt256
|
|
proc low*(T: type NodeTag): T = low(UInt256).T
|
|
proc high*(T: type NodeTag): T = high(UInt256).T
|
|
|
|
proc `+`*(a: NodeTag; b: UInt256): NodeTag = (a.u256+b).NodeTag
|
|
proc `-`*(a: NodeTag; b: UInt256): NodeTag = (a.u256-b).NodeTag
|
|
proc `-`*(a, b: NodeTag): UInt256 = (a.u256 - b.u256)
|
|
|
|
proc `==`*(a, b: NodeTag): bool = a.u256 == b.u256
|
|
proc `<=`*(a, b: NodeTag): bool = a.u256 <= b.u256
|
|
proc `<`*(a, b: NodeTag): bool = a.u256 < b.u256
|
|
|
|
proc cmp*(x, y: NodeTag): int = cmp(x.UInt256, y.UInt256)
|
|
|
|
proc hash*(a: NodeTag): Hash =
|
|
## Mixin for `Table` or `keyedQueue`
|
|
a.to(Hash256).data.hash
|
|
|
|
proc digestTo*(data: Blob; T: type NodeTag): T =
|
|
## Hash the `data` argument
|
|
keccakHash(data).to(T)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions: `NodeTagRange` helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc isEmpty*(lrs: NodeTagRangeSet): bool =
|
|
## Returns `true` if the argument set `lrs` of intervals is empty
|
|
lrs.chunks == 0
|
|
|
|
proc isEmpty*(lrs: openArray[NodeTagRangeSet]): bool =
|
|
## Variant of `isEmpty()` where intervals are distributed across several
|
|
## sets.
|
|
for ivSet in lrs:
|
|
if 0 < ivSet.chunks:
|
|
return false
|
|
true
|
|
|
|
proc isFull*(lrs: NodeTagRangeSet): bool =
|
|
## Returns `true` if the argument set `lrs` contains of the single
|
|
## interval [low(NodeTag),high(NodeTag)].
|
|
lrs.total == 0 and 0 < lrs.chunks
|
|
|
|
|
|
proc emptyFactor*(lrs: NodeTagRangeSet): float =
|
|
## Relative uncovered total, i.e. `#points-not-covered / 2^256` to be used
|
|
## in statistics or triggers.
|
|
if 0 < lrs.total:
|
|
((high(NodeTag) - lrs.total).u256 + 1).to(float) / (2.0^256)
|
|
elif lrs.chunks == 0:
|
|
1.0 # `total` represents the residue class `mod 2^256` from `0`..`(2^256-1)`
|
|
else:
|
|
0.0 # number of points in `lrs` is `2^256 + 1`
|
|
|
|
proc emptyFactor*(lrs: openArray[NodeTagRangeSet]): float =
|
|
## Variant of `emptyFactor()` where intervals are distributed across several
|
|
## sets. This function makes sense only if the interval sets are mutually
|
|
## disjunct.
|
|
var accu: NodeTag
|
|
for ivSet in lrs:
|
|
if 0 < ivSet.total:
|
|
if high(NodeTag) - ivSet.total < accu:
|
|
return 0.0
|
|
accu = accu + ivSet.total
|
|
elif ivSet.chunks == 0:
|
|
discard
|
|
else: # number of points in `ivSet` is `2^256 + 1`
|
|
return 0.0
|
|
if accu == 0.to(NodeTag):
|
|
return 1.0
|
|
((high(NodeTag) - accu).u256 + 1).to(float) / (2.0^256)
|
|
|
|
|
|
proc fullFactor*(lrs: NodeTagRangeSet): float =
|
|
## Relative covered total, i.e. `#points-covered / 2^256` to be used
|
|
## in statistics or triggers
|
|
if 0 < lrs.total:
|
|
lrs.total.u256.to(float) / (2.0^256)
|
|
elif lrs.chunks == 0:
|
|
0.0 # `total` represents the residue class `mod 2^256` from `0`..`(2^256-1)`
|
|
else:
|
|
1.0 # number of points in `lrs` is `2^256 + 1`
|
|
|
|
proc fullFactor*(iv: NodeTagRange): float =
|
|
## Relative covered length of an inetrval, i.e. `#points-covered / 2^256`
|
|
if 0 < iv.len:
|
|
iv.len.u256.to(float) / (2.0^256)
|
|
else:
|
|
1.0 # number of points in `iv` is `2^256 + 1`
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions: printing & pretty printing
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc `$`*(nodeTag: NodeTag): string =
|
|
if nodeTag == high(NodeTag):
|
|
"2^256-1"
|
|
elif nodeTag == 0.u256.NodeTag:
|
|
"0"
|
|
else:
|
|
nodeTag.to(Hash256).data.toHex
|
|
|
|
proc `$`*(nodeKey: NodeKey): string =
|
|
$nodeKey.to(NodeTag)
|
|
|
|
proc leafRangePp*(a, b: NodeTag): string =
|
|
## Needed for macro generated DSL files like `snap.nim` because the
|
|
## `distinct` flavour of `NodeTag` is discarded there.
|
|
result = "[" & $a
|
|
if a != b:
|
|
result &= ',' & $b
|
|
result &= "]"
|
|
|
|
proc leafRangePp*(iv: NodeTagRange): string =
|
|
## Variant of `leafRangePp()`
|
|
leafRangePp(iv.minPt, iv.maxPt)
|
|
|
|
|
|
proc `$`*(a, b: NodeTag): string =
|
|
## Prettyfied prototype
|
|
leafRangePp(a,b)
|
|
|
|
proc `$`*(iv: NodeTagRange): string =
|
|
leafRangePp iv
|
|
|
|
|
|
proc dump*(
|
|
ranges: openArray[NodeTagRangeSet];
|
|
moan: proc(overlap: UInt256; iv: NodeTagRange) {.gcsafe.};
|
|
printRangesMax = high(int);
|
|
): string =
|
|
## Dump/anlalyse range sets
|
|
var
|
|
cache: NodeTagRangeSet
|
|
ivTotal = 0.u256
|
|
ivCarry = false
|
|
|
|
if ranges.len == 1:
|
|
cache = ranges[0]
|
|
ivTotal = cache.total
|
|
if ivTotal == 0.u256 and 0 < cache.chunks:
|
|
ivCarry = true
|
|
else:
|
|
cache = NodeTagRangeSet.init()
|
|
for ivSet in ranges:
|
|
if ivSet.total == 0.u256 and 0 < ivSet.chunks:
|
|
ivCarry = true
|
|
elif ivTotal <= high(UInt256) - ivSet.total:
|
|
ivTotal += ivSet.total
|
|
else:
|
|
ivCarry = true
|
|
for iv in ivSet.increasing():
|
|
let n = cache.merge(iv)
|
|
if n != iv.len and not moan.isNil:
|
|
moan(iv.len - n, iv)
|
|
|
|
if 0 == cache.total and 0 < cache.chunks:
|
|
result = "2^256"
|
|
if not ivCarry:
|
|
result &= ":" & $ivTotal
|
|
else:
|
|
result = $cache.total
|
|
if ivCarry:
|
|
result &= ":2^256"
|
|
elif ivTotal != cache.total:
|
|
result &= ":" & $ivTotal
|
|
|
|
result &= ":"
|
|
if cache.chunks <= printRangesMax:
|
|
result &= toSeq(cache.increasing).mapIt($it).join(",")
|
|
else:
|
|
result &= toSeq(cache.increasing).mapIt($it)[0 ..< printRangesMax].join(",")
|
|
result &= " " & $(cache.chunks - printRangesMax) & " more .."
|
|
|
|
proc dump*(
|
|
range: NodeTagRangeSet;
|
|
printRangesMax = high(int);
|
|
): string =
|
|
## Ditto
|
|
[range].dump(nil, printRangesMax)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|