mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-01-16 23:31:16 +00:00
a84a2131cd
* Imported/rebase from `no-ext`, PR #2485 Store extension nodes together with the branch Extension nodes must be followed by a branch - as such, it makes sense to store the two together both in the database and in memory: * fewer reads, writes and updates to traverse the tree * simpler logic for maintaining the node structure * less space used, both memory and storage, because there are fewer nodes overall There is also a downside: hashes can no longer be cached for an extension - instead, only the extension+branch hash can be cached - this seems like a fine tradeoff since computing it should be fast. TODO: fix commented code * Fix merge functions and `toNode()` * Update `merkleSignCommit()` prototype why: Result is always a 32bit hash * Update short Merkle hash key generation details: Ethereum reference MPTs use Keccak hashes as node links if the size of an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded node value is used as a pseudo node link (rather than a hash.) This is specified in the yellow paper, appendix D. Different to the `Aristo` implementation, the reference MPT would not store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node is stored as a node link on the parent database. Only for the root hash, the top level node is always referred to by the hash. * Fix/update `Extension` sections why: Were commented out after removal of a dedicated `Extension` type which left the system disfunctional. * Clean up unused error codes * Update unit tests * Update docu --------- Co-authored-by: Jacek Sieka <jacek@status.im>
599 lines
20 KiB
Nim
599 lines
20 KiB
Nim
# nimbus-eth1
|
|
# Copyright (c) 2023-2024 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or distributed
|
|
# except according to those terms.
|
|
|
|
## Aristo DB -- Patricia Trie traversal
|
|
## ====================================
|
|
##
|
|
## This module provides tools to visit leaf vertices in a monotone order,
|
|
## increasing or decreasing. These tools are intended for
|
|
## * boundary proof verification
|
|
## * step along leaf vertices in sorted order
|
|
## * tree/trie consistency checks when debugging
|
|
##
|
|
|
|
{.push raises: [].}
|
|
|
|
import
|
|
std/[tables, typetraits],
|
|
eth/common,
|
|
results,
|
|
"."/[aristo_desc, aristo_fetch, aristo_get, aristo_hike, aristo_path]
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc `<=`(a, b: NibblesBuf): bool =
|
|
## Compare nibbles, different lengths are padded to the right with zeros
|
|
let abMin = min(a.len, b.len)
|
|
for n in 0 ..< abMin:
|
|
if a[n] < b[n]:
|
|
return true
|
|
if b[n] < a[n]:
|
|
return false
|
|
# otherwise a[n] == b[n]
|
|
|
|
# Assuming zero for missing entries
|
|
if b.len < a.len:
|
|
for n in abMin + 1 ..< a.len:
|
|
if 0 < a[n]:
|
|
return false
|
|
true
|
|
|
|
proc `<`(a, b: NibblesBuf): bool =
|
|
not (b <= a)
|
|
|
|
# ------------------
|
|
|
|
proc branchNibbleMin*(vtx: VertexRef; minInx: int8): int8 =
|
|
## Find the least index for an argument branch `vtx` link with index
|
|
## greater or equal the argument `nibble`.
|
|
if vtx.vType == Branch:
|
|
for n in minInx .. 15:
|
|
if vtx.bVid[n].isValid:
|
|
return n
|
|
-1
|
|
|
|
proc branchNibbleMax*(vtx: VertexRef; maxInx: int8): int8 =
|
|
## Find the greatest index for an argument branch `vtx` link with index
|
|
## less or equal the argument `nibble`.
|
|
if vtx.vType == Branch:
|
|
for n in maxInx.countDown 0:
|
|
if vtx.bVid[n].isValid:
|
|
return n
|
|
-1
|
|
|
|
# ------------------
|
|
|
|
proc toLeafTiePayload(hike: Hike): (LeafTie,LeafPayload) =
|
|
## Shortcut for iterators. This function will gloriously crash unless the
|
|
## `hike` argument is complete.
|
|
(LeafTie(root: hike.root, path: hike.to(NibblesBuf).pathToTag.value),
|
|
hike.legs[^1].wp.vtx.lData)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc complete(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
vid: VertexID; # Start ID
|
|
db: AristoDbRef; # Database layer
|
|
hikeLenMax: static[int]; # Beware of loops (if any)
|
|
doLeast: static[bool]; # Direction: *least* or *most*
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Extend `hike` using least or last vertex without recursion.
|
|
if not vid.isValid:
|
|
return err((VertexID(0),NearbyVidInvalid))
|
|
var
|
|
vid = vid
|
|
vtx = db.getVtx (hike.root, vid)
|
|
uHike = Hike(root: hike.root, legs: hike.legs)
|
|
if not vtx.isValid:
|
|
return err((vid,GetVtxNotFound))
|
|
|
|
while uHike.legs.len < hikeLenMax:
|
|
var leg = Leg(wp: VidVtxPair(vid: vid, vtx: vtx), nibble: -1)
|
|
case vtx.vType:
|
|
of Leaf:
|
|
uHike.legs.add leg
|
|
return ok(uHike) # done
|
|
|
|
# of Extension:
|
|
# vid = vtx.eVid
|
|
# if vid.isValid:
|
|
# vtx = db.getVtx (hike.root, vid)
|
|
# if vtx.isValid:
|
|
# uHike.legs.add leg
|
|
# continue
|
|
# return err((vid,NearbyExtensionError)) # Oops, no way
|
|
|
|
of Branch:
|
|
when doLeast:
|
|
leg.nibble = vtx.branchNibbleMin 0
|
|
else:
|
|
leg.nibble = vtx.branchNibbleMax 15
|
|
if 0 <= leg.nibble:
|
|
vid = vtx.bVid[leg.nibble]
|
|
vtx = db.getVtx (hike.root, vid)
|
|
if vtx.isValid:
|
|
uHike.legs.add leg
|
|
continue
|
|
return err((leg.wp.vid,NearbyBranchError)) # Oops, no way
|
|
|
|
err((VertexID(0),NearbyNestingTooDeep))
|
|
|
|
|
|
proc zeroAdjust(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
doLeast: static[bool]; # Direction: *least* or *most*
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Adjust empty argument path to the first vertex entry to the right. Ths
|
|
## applies is the argument `hike` is before the first entry in the database.
|
|
## The result is a hike which is aligned with the first entry.
|
|
proc accept(p: Hike; pfx: NibblesBuf): bool =
|
|
when doLeast:
|
|
p.tail <= pfx
|
|
else:
|
|
pfx <= p.tail
|
|
|
|
proc branchBorderNibble(w: VertexRef; n: int8): int8 =
|
|
when doLeast:
|
|
w.branchNibbleMin n
|
|
else:
|
|
w.branchNibbleMax n
|
|
|
|
proc toHike(pfx: NibblesBuf, root: VertexID, db: AristoDbRef): Hike =
|
|
when doLeast:
|
|
pfx.pathPfxPad(0).hikeUp(root, db).to(Hike)
|
|
else:
|
|
pfx.pathPfxPad(255).hikeUp(root, db).to(Hike)
|
|
|
|
if 0 < hike.legs.len:
|
|
return ok(hike)
|
|
|
|
let root = db.getVtx (hike.root, hike.root)
|
|
if root.isValid:
|
|
block fail:
|
|
var pfx: NibblesBuf
|
|
case root.vType:
|
|
of Branch:
|
|
# Find first non-dangling link and assign it
|
|
let nibbleID = block:
|
|
when doLeast:
|
|
if hike.tail.len == 0: 0i8
|
|
else: hike.tail[0].int8
|
|
else:
|
|
if hike.tail.len == 0:
|
|
break fail
|
|
hike.tail[0].int8
|
|
let n = root.branchBorderNibble nibbleID
|
|
if n < 0:
|
|
# Before or after the database range
|
|
return err((hike.root,NearbyBeyondRange))
|
|
pfx = root.ePfx & NibblesBuf.nibble(n.byte)
|
|
|
|
# of Extension:
|
|
# let ePfx = root.ePfx
|
|
# # Must be followed by a branch vertex
|
|
# if not hike.accept ePfx:
|
|
# break fail
|
|
# let vtx = db.getVtx (hike.root, root.eVid)
|
|
# if not vtx.isValid:
|
|
# break fail
|
|
# pfx = ePfx
|
|
|
|
of Leaf:
|
|
pfx = root.lPfx
|
|
if not hike.accept pfx:
|
|
# Before or after the database range
|
|
return err((hike.root,NearbyBeyondRange))
|
|
|
|
var newHike = pfx.toHike(hike.root, db)
|
|
if 0 < newHike.legs.len:
|
|
return ok(newHike)
|
|
|
|
err((VertexID(0),NearbyEmptyHike))
|
|
|
|
|
|
proc finalise(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
moveRight: static[bool]; # Direction of next vertex
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Handle some pathological cases after main processing failed
|
|
proc beyond(p: Hike; pfx: NibblesBuf): bool =
|
|
when moveRight:
|
|
pfx < p.tail
|
|
else:
|
|
p.tail < pfx
|
|
|
|
proc branchBorderNibble(w: VertexRef): int8 =
|
|
when moveRight:
|
|
w.branchNibbleMax 15
|
|
else:
|
|
w.branchNibbleMin 0
|
|
|
|
# Just for completeness (this case should have been handled, already)
|
|
if hike.legs.len == 0:
|
|
return err((VertexID(0),NearbyEmptyHike))
|
|
|
|
# Check whether the path is beyond the database range
|
|
if 0 < hike.tail.len: # nothing to compare against, otherwise
|
|
let top = hike.legs[^1]
|
|
|
|
# Note that only a `Branch` vertices has a non-zero nibble
|
|
if 0 <= top.nibble and top.nibble == top.wp.vtx.branchBorderNibble:
|
|
# Check the following up vertex
|
|
let
|
|
vid = top.wp.vtx.bVid[top.nibble]
|
|
vtx = db.getVtx (hike.root, vid)
|
|
if not vtx.isValid:
|
|
return err((vid,NearbyDanglingLink))
|
|
|
|
var pfx: NibblesBuf
|
|
case vtx.vType:
|
|
of Leaf:
|
|
pfx = vtx.lPfx
|
|
of Branch:
|
|
pfx = vtx.ePfx & NibblesBuf.nibble(vtx.branchBorderNibble.byte)
|
|
if hike.beyond pfx:
|
|
return err((vid,NearbyBeyondRange))
|
|
|
|
# Pathological cases
|
|
# * finalise right: nfffff.. for n < f or
|
|
# * finalise left: n00000.. for 0 < n
|
|
if hike.legs[0].wp.vtx.vType == Branch or
|
|
(1 < hike.legs.len and hike.legs[1].wp.vtx.vType == Branch):
|
|
return err((VertexID(0),NearbyFailed)) # no more vertices
|
|
|
|
err((hike.legs[^1].wp.vid,NearbyUnexpectedVtx)) # error
|
|
|
|
|
|
proc nearbyNext(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
hikeLenMax: static[int]; # Beware of loops (if any)
|
|
moveRight: static[bool]; # Direction of next vertex
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Unified implementation of `nearbyRight()` and `nearbyLeft()`.
|
|
proc accept(nibble: int8): bool =
|
|
## Accept `nibble` unless on boundaty dependent on `moveRight`
|
|
when moveRight:
|
|
nibble < 15
|
|
else:
|
|
0 < nibble
|
|
|
|
proc accept(p: Hike; pfx: NibblesBuf): bool =
|
|
when moveRight:
|
|
p.tail <= pfx
|
|
else:
|
|
pfx <= p.tail
|
|
|
|
proc branchNibbleNext(w: VertexRef; n: int8): int8 =
|
|
when moveRight:
|
|
w.branchNibbleMin(n + 1)
|
|
else:
|
|
w.branchNibbleMax(n - 1)
|
|
|
|
# Some easy cases
|
|
let hike = ? hike.zeroAdjust(db, doLeast=moveRight)
|
|
|
|
# if hike.legs[^1].wp.vtx.vType == Extension:
|
|
# let vid = hike.legs[^1].wp.vtx.eVid
|
|
# return hike.complete(vid, db, hikeLenMax, doLeast=moveRight)
|
|
|
|
var
|
|
uHike = hike
|
|
start = true
|
|
while 0 < uHike.legs.len:
|
|
let top = uHike.legs[^1]
|
|
case top.wp.vtx.vType:
|
|
of Leaf:
|
|
return ok(uHike)
|
|
of Branch:
|
|
if top.nibble < 0 or uHike.tail.len == 0:
|
|
return err((top.wp.vid,NearbyUnexpectedVtx))
|
|
# of Extension:
|
|
# uHike.tail = top.wp.vtx.ePfx & uHike.tail
|
|
# uHike.legs.setLen(uHike.legs.len - 1)
|
|
# continue
|
|
|
|
var
|
|
step = top
|
|
let
|
|
uHikeLen = uHike.legs.len # in case of backtracking
|
|
uHikeTail = uHike.tail # in case of backtracking
|
|
|
|
# Look ahead checking next vertex
|
|
if start:
|
|
let vid = top.wp.vtx.bVid[top.nibble]
|
|
if not vid.isValid:
|
|
return err((top.wp.vid,NearbyDanglingLink)) # error
|
|
|
|
let vtx = db.getVtx (hike.root, vid)
|
|
if not vtx.isValid:
|
|
return err((vid,GetVtxNotFound)) # error
|
|
|
|
case vtx.vType
|
|
of Leaf:
|
|
if uHike.accept vtx.lPfx:
|
|
return uHike.complete(vid, db, hikeLenMax, doLeast=moveRight)
|
|
# of Extension:
|
|
# if uHike.accept vtx.ePfx:
|
|
# return uHike.complete(vid, db, hikeLenMax, doLeast=moveRight)
|
|
of Branch:
|
|
let nibble = uHike.tail[0].int8
|
|
if start and accept nibble:
|
|
# Step down and complete with a branch link on the child vertex
|
|
step = Leg(wp: VidVtxPair(vid: vid, vtx: vtx), nibble: nibble)
|
|
uHike.legs.add step
|
|
|
|
# Find the next item to the right/left of the current top entry
|
|
let n = step.wp.vtx.branchNibbleNext step.nibble
|
|
if 0 <= n:
|
|
uHike.legs[^1].nibble = n
|
|
return uHike.complete(
|
|
step.wp.vtx.bVid[n], db, hikeLenMax, doLeast=moveRight)
|
|
|
|
if start:
|
|
# Retry without look ahead
|
|
start = false
|
|
|
|
# Restore `uPath` (pop temporary extra step)
|
|
if uHikeLen < uHike.legs.len:
|
|
uHike.legs.setLen(uHikeLen)
|
|
uHike.tail = uHikeTail
|
|
else:
|
|
# Pop current `Branch` vertex on top and append nibble to `tail`
|
|
uHike.tail = NibblesBuf.nibble(top.nibble.byte) & uHike.tail
|
|
uHike.legs.setLen(uHike.legs.len - 1)
|
|
# End while
|
|
|
|
# Handle some pathological cases
|
|
hike.finalise(db, moveRight)
|
|
|
|
proc nearbyNextLeafTie(
|
|
lty: LeafTie; # Some `Patricia Trie` path
|
|
db: AristoDbRef; # Database layer
|
|
hikeLenMax: static[int]; # Beware of loops (if any)
|
|
moveRight:static[bool]; # Direction of next vertex
|
|
): Result[PathID,(VertexID,AristoError)] =
|
|
## Variant of `nearbyNext()`, convenience wrapper
|
|
let hike = ? lty.hikeUp(db).to(Hike).nearbyNext(db, hikeLenMax, moveRight)
|
|
|
|
if 0 < hike.legs.len:
|
|
if hike.legs[^1].wp.vtx.vType != Leaf:
|
|
return err((hike.legs[^1].wp.vid,NearbyLeafExpected))
|
|
let rc = hike.legsTo(NibblesBuf).pathToTag
|
|
if rc.isOk:
|
|
return ok rc.value
|
|
return err((VertexID(0),rc.error))
|
|
|
|
err((VertexID(0),NearbyLeafExpected))
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions, moving and right boundary proof
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc right*(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Extends the maximally extended argument vertices `hike` to the right (i.e.
|
|
## with non-decreasing path value). This function does not backtrack if
|
|
## there are dangling links in between. It will return an error in that case.
|
|
##
|
|
## If there is no more leaf vertices to the right of the argument `hike`, the
|
|
## particular error code `NearbyBeyondRange` is returned.
|
|
##
|
|
## This code is intended to be used for verifying a left-bound proof to
|
|
## verify that there is no leaf vertex *right* of a boundary path value.
|
|
hike.nearbyNext(db, 64, moveRight=true)
|
|
|
|
proc right*(
|
|
lty: LeafTie; # Some `Patricia Trie` path
|
|
db: AristoDbRef; # Database layer
|
|
): Result[LeafTie,(VertexID,AristoError)] =
|
|
## Variant of `nearbyRight()` working with a `LeafTie` argument instead
|
|
## of a `Hike`.
|
|
ok LeafTie(
|
|
root: lty.root,
|
|
path: ? lty.nearbyNextLeafTie(db, 64, moveRight=true))
|
|
|
|
iterator rightPairs*(
|
|
db: AristoDbRef; # Database layer
|
|
start = low(LeafTie); # Before or at first value
|
|
): (LeafTie,LeafPayload) =
|
|
## Traverse the sub-trie implied by the argument `start` with increasing
|
|
## order.
|
|
var
|
|
hike = start.hikeUp(db).to(Hike)
|
|
rc = hike.right db
|
|
while rc.isOK:
|
|
hike = rc.value
|
|
let (key, pyl) = hike.toLeafTiePayload
|
|
yield (key, pyl)
|
|
if high(PathID) <= key.path:
|
|
break
|
|
|
|
# Increment `key` by one and update `hike`. In many cases, the current
|
|
# `hike` can be modified and re-used which saves some database lookups.
|
|
block reuseHike:
|
|
let tail = hike.legs[^1].wp.vtx.lPfx
|
|
if 0 < tail.len:
|
|
let topNibble = tail[tail.len - 1]
|
|
if topNibble < 15:
|
|
let newNibble = NibblesBuf.nibble(topNibble+1)
|
|
hike.tail = tail.slice(0, tail.len - 1) & newNibble
|
|
hike.legs.setLen(hike.legs.len - 1)
|
|
break reuseHike
|
|
if 1 < tail.len:
|
|
let nxtNibble = tail[tail.len - 2]
|
|
if nxtNibble < 15:
|
|
let dblNibble = NibblesBuf.fromBytes([((nxtNibble+1) shl 4) + 0])
|
|
hike.tail = tail.slice(0, tail.len - 2) & dblNibble
|
|
hike.legs.setLen(hike.legs.len - 1)
|
|
break reuseHike
|
|
# Fall back to default method
|
|
hike = key.next.hikeUp(db).to(Hike)
|
|
|
|
rc = hike.right db
|
|
# End while
|
|
|
|
iterator rightPairsAccount*(
|
|
db: AristoDbRef; # Database layer
|
|
start = low(PathID); # Before or at first value
|
|
): (PathID,AristoAccount) =
|
|
## Variant of `rightPairs()` for accounts tree
|
|
for (lty,pyl) in db.rightPairs LeafTie(root: VertexID(1), path: start):
|
|
yield (lty.path, pyl.account)
|
|
|
|
iterator rightPairsGeneric*(
|
|
db: AristoDbRef; # Database layer
|
|
root: VertexID; # Generic root (different from VertexID)
|
|
start = low(PathID); # Before or at first value
|
|
): (PathID,Blob) =
|
|
## Variant of `rightPairs()` for a generic tree
|
|
# Verify that `root` is neither from an accounts tree nor a strorage tree.
|
|
if VertexID(1) < root and root.distinctBase < LEAST_FREE_VID:
|
|
for (lty,pyl) in db.rightPairs LeafTie(root: VertexID(1), path: start):
|
|
yield (lty.path, pyl.rawBlob)
|
|
|
|
iterator rightPairsStorage*(
|
|
db: AristoDbRef; # Database layer
|
|
accPath: Hash256; # Account the storage data belong to
|
|
start = low(PathID); # Before or at first value
|
|
): (PathID,UInt256) =
|
|
## Variant of `rightPairs()` for a storage tree
|
|
block body:
|
|
let stoID = db.fetchStorageID(accPath).valueOr:
|
|
break body
|
|
if stoID.isValid:
|
|
for (lty,pyl) in db.rightPairs LeafTie(root: stoID, path: start):
|
|
yield (lty.path, pyl.stoData)
|
|
|
|
# ----------------
|
|
|
|
proc left*(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
): Result[Hike,(VertexID,AristoError)] =
|
|
## Similar to `nearbyRight()`.
|
|
##
|
|
## This code is intended to be used for verifying a right-bound proof to
|
|
## verify that there is no leaf vertex *left* to a boundary path value.
|
|
hike.nearbyNext(db, 64, moveRight=false)
|
|
|
|
proc left*(
|
|
lty: LeafTie; # Some `Patricia Trie` path
|
|
db: AristoDbRef; # Database layer
|
|
): Result[LeafTie,(VertexID,AristoError)] =
|
|
## Similar to `nearbyRight()` for `LeafTie` argument instead of a `Hike`.
|
|
ok LeafTie(
|
|
root: lty.root,
|
|
path: ? lty.nearbyNextLeafTie(db, 64, moveRight=false))
|
|
|
|
iterator leftPairs*(
|
|
db: AristoDbRef; # Database layer
|
|
start = high(LeafTie); # Before or at first value
|
|
): (LeafTie,LeafPayload) =
|
|
## Traverse the sub-trie implied by the argument `start` with decreasing
|
|
## order. It will stop at any error. In order to reproduce an error, one
|
|
## can run the function `left()` on the last returned `LiefTie` item with
|
|
## the `path` field decremented by `1`.
|
|
var
|
|
hike = start.hikeUp(db).to(Hike)
|
|
rc = hike.left db
|
|
while rc.isOK:
|
|
hike = rc.value
|
|
let (key, pyl) = hike.toLeafTiePayload
|
|
yield (key, pyl)
|
|
if key.path <= low(PathID):
|
|
break
|
|
|
|
# Decrement `key` by one and update `hike`. In many cases, the current
|
|
# `hike` can be modified and re-used which saves some database lookups.
|
|
block reuseHike:
|
|
let tail = hike.legs[^1].wp.vtx.lPfx
|
|
if 0 < tail.len:
|
|
let topNibble = tail[tail.len - 1]
|
|
if 0 < topNibble:
|
|
let newNibble = NibblesBuf.nibble(topNibble - 1)
|
|
hike.tail = tail.slice(0, tail.len - 1) & newNibble
|
|
hike.legs.setLen(hike.legs.len - 1)
|
|
break reuseHike
|
|
if 1 < tail.len:
|
|
let nxtNibble = tail[tail.len - 2]
|
|
if 0 < nxtNibble:
|
|
let dblNibble = NibblesBuf.fromBytes([((nxtNibble-1) shl 4) + 15])
|
|
hike.tail = tail.slice(0, tail.len - 2) & dblNibble
|
|
hike.legs.setLen(hike.legs.len - 1)
|
|
break reuseHike
|
|
# Fall back to default method
|
|
hike = key.prev.hikeUp(db).to(Hike)
|
|
|
|
rc = hike.left db
|
|
# End while
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public debugging helpers
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc rightMissing*(
|
|
hike: Hike; # Partially expanded chain of vertices
|
|
db: AristoDbRef; # Database layer
|
|
): Result[bool,AristoError] =
|
|
## Returns `true` if the maximally extended argument vertex `hike` is the
|
|
## right most on the hexary trie database. It verifies that there is no more
|
|
## leaf entry to the right of the argument `hike`. This function is an
|
|
## alternative to
|
|
## ::
|
|
## let rc = path.nearbyRight(db)
|
|
## if rc.isOk:
|
|
## # not at the end => false
|
|
## ...
|
|
## elif rc.error != NearbyBeyondRange:
|
|
## # problem with database => error
|
|
## ...
|
|
## else:
|
|
## # no nore vertices => true
|
|
## ...
|
|
## and is intended mainly for debugging.
|
|
if hike.legs.len == 0:
|
|
return err(NearbyEmptyHike)
|
|
if 0 < hike.tail.len:
|
|
return err(NearbyPathTailUnexpected)
|
|
|
|
let top = hike.legs[^1]
|
|
if top.wp.vtx.vType != Branch or top.nibble < 0:
|
|
return err(NearbyBranchError)
|
|
|
|
let vid = top.wp.vtx.bVid[top.nibble]
|
|
if not vid.isValid:
|
|
return err(NearbyDanglingLink) # error
|
|
|
|
let vtx = db.getVtx (hike.root, vid)
|
|
if not vtx.isValid:
|
|
return err(GetVtxNotFound) # error
|
|
|
|
case vtx.vType
|
|
of Leaf:
|
|
return ok(vtx.lPfx < hike.tail)
|
|
# of Extension:
|
|
# return ok(vtx.ePfx < hike.tail)
|
|
of Branch:
|
|
return ok(vtx.branchNibbleMin(hike.tail[0].int8) < 0)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|