nimbus-eth1/nimbus/db/aristo/aristo_hashify.nim

337 lines
11 KiB
Nim

# nimbus-eth1
# Copyright (c) 2021 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie Merkleisation
## ========================================
##
## For the current state of the `Patricia Trie`, keys (equivalent to hashes)
## are associated with the vertex IDs. Existing key associations are checked
## (i.e. recalculated and compared) unless the ID is locked. In the latter
## case, the key is assumed to be correct without checking.
##
## The association algorithm is an optimised version of:
##
## * For all leaf vertices, label them with parent vertex so that there are
## chains from the leafs to the root vertex.
##
## * Apply a width-first traversal starting with the set of leafs vertices
## compiling the keys to associate with by hashing the current vertex.
##
## Apperently, keys (aka hashes) can be compiled for leaf vertices. For the
## other vertices, the keys can be compiled if all the children keys are
## known which is assured by the nature of the width-first traversal method.
##
## For production, this algorithm is slightly optimised:
##
## * For each leaf vertex, calculate the chain from the leaf to the root vertex.
## + Starting at the leaf, calculate the key for each vertex towards the root
## vertex as long as possible.
## + Stash the rest of the partial chain to be completed later
##
## * While there is a partial chain left, use the ends towards the leaf
## vertices and calculate the remaining keys (which results in a width-first
## traversal, again.)
{.push raises: [].}
import
std/[algorithm, sequtils, sets, strutils, tables],
chronicles,
eth/common,
stew/[interval_set, results],
"."/[aristo_desc, aristo_get, aristo_hike, aristo_transcode, aristo_utils,
aristo_vid]
type
BackVidValRef = ref object
root: VertexID ## Root vertex
onBe: bool ## Table key vid refers to backend
toVid: VertexID ## Next/follow up vertex
BackVidTab =
Table[VertexID,BackVidValRef]
logScope:
topics = "aristo-hashify"
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
template logTxt(info: static[string]): static[string] =
"Hashify " & info
func getOrVoid(tab: BackVidTab; vid: VertexID): BackVidValRef =
tab.getOrDefault(vid, BackVidValRef(nil))
func isValid(brv: BackVidValRef): bool =
brv != BackVidValRef(nil)
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
proc updateHashKey(
db: AristoDbRef; # Database, top layer
root: VertexID; # Root ID
vid: VertexID; # Vertex ID to check for
expected: HashKey; # Hash key for vertex address by `vid`
backend: bool; # Set `true` id vertex is on backend
): Result[void,AristoError] =
## Update the argument hash key `expected` for the vertex addressed by `vid`.
##
# If the Merkle hash has been cached locally, already it must match.
block:
let key = db.top.kMap.getOrVoid(vid).key
if key.isValid:
if key != expected:
let error = HashifyExistingHashMismatch
debug logTxt "hash update failed", vid, key, expected, error
return err(error)
return ok()
# If the vertex had been cached locally, there would be no locally cached
# Merkle hash key. It will be created at the bottom end of the function.
#
# So there remains tha case when vertex is available on the backend only.
# The Merkle hash not cached locally. It might be overloaded (and eventually
# overwitten.)
if backend:
# Ok, vertex is on the backend.
let rc = db.getKeyBackend vid
if rc.isOk:
let key = rc.value
if key == expected:
return ok()
# This step is a error in the sense that something the on the backend
# is fishy. There should not be contradicting Merkle hashes. Throwing
# an error heres would lead to a deadlock so we correct it.
debug "correcting backend hash key mismatch", vid, key, expected
# Proceed `vidAttach()`, below
elif rc.error != GetKeyNotFound:
debug logTxt "backend key fetch failed", vid, expected, error=rc.error
return err(rc.error)
else:
discard
# Proceed `vidAttach()`, below
# Othwise there is no Merkle hash, so create one with the `expected` key
db.vidAttach(HashLabel(root: root, key: expected), vid)
ok()
proc leafToRootHasher(
db: AristoDbRef; # Database, top layer
hike: Hike; # Hike for labelling leaf..root
): Result[int,(VertexID,AristoError)] =
## Returns the index of the first node that could not be hashed
for n in (hike.legs.len-1).countDown(0):
let
wp = hike.legs[n].wp
bg = hike.legs[n].backend
rc = wp.vtx.toNode db
if rc.isErr:
return ok n
# Vertices marked proof nodes need not be checked
if wp.vid in db.top.pPrf:
continue
# Check against existing key, or store new key
let
key = rc.value.to(HashKey)
rx = db.updateHashKey(hike.root, wp.vid, key, bg)
if rx.isErr:
return err((wp.vid,rx.error))
ok -1 # all could be hashed
# ------------------
proc deletedLeafHasher(
db: AristoDbRef; # Database, top layer
hike: Hike; # Hike for labelling leaf..root
): Result[void,(VertexID,AristoError)] =
var
todo = hike.legs.reversed.mapIt(it.wp)
solved: HashSet[VertexID]
# Edge case for empty `hike`
if todo.len == 0:
let vtx = db.getVtx hike.root
if not vtx.isValid:
return err((hike.root,HashifyVtxMissing))
todo = @[VidVtxPair(vid: hike.root, vtx: vtx)]
while 0 < todo.len:
var
delayed: seq[VidVtxPair]
didHere: HashSet[VertexID] # avoid duplicates
for wp in todo:
let rc = wp.vtx.toNode(db, stopEarly=false)
if rc.isOk:
let
expected = rc.value.to(HashKey)
key = db.getKey wp.vid
if key.isValid:
if key != expected:
return err((wp.vid,HashifyExistingHashMismatch))
else:
db.vidAttach(HashLabel(root: hike.root, key: expected), wp.vid)
solved.incl wp.vid
else:
# Resolve follow up vertices first
for vid in rc.error:
let vtx = db.getVtx vid
if not vtx.isValid:
return err((vid,HashifyVtxMissing))
if vid in solved:
discard wp.vtx.toNode(db, stopEarly=false)
return err((vid,HashifyVidCircularDependence))
if vid notin didHere:
didHere.incl vid
delayed.add VidVtxPair(vid: vid, vtx: vtx)
# Followed by this vertex which relies on the ones registered above.
if wp.vid notin didHere:
didHere.incl wp.vid
delayed.add wp
todo = delayed
ok()
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
proc hashifyClear*(
db: AristoDbRef; # Database, top layer
locksOnly = false; # If `true`, then clear only proof locks
) =
## Clear all `Merkle` hashes from the `db` argument database top layer.
if not locksOnly:
db.top.pAmk.clear
db.top.kMap.clear
db.top.pPrf.clear
proc hashify*(
db: AristoDbRef; # Database, top layer
): Result[HashSet[VertexID],(VertexID,AristoError)] =
## Add keys to the `Patricia Trie` so that it becomes a `Merkle Patricia
## Tree`. If successful, the function returns the keys (aka Merkle hash) of
## the root vertices.
var
roots: HashSet[VertexID]
completed: HashSet[VertexID]
# Width-first leaf-to-root traversal structure
backLink: BackVidTab
downMost: BackVidTab
for (lky,vid) in db.top.lTab.pairs:
let hike = lky.hikeUp(db)
# There might be deleted entries on the leaf table. If this is tha case,
# the Merkle hashes for the vertices in the `hike` can all be compiled.
if not vid.isValid:
let rc = db.deletedLeafHasher hike
if rc.isErr:
return err(rc.error)
elif hike.error != AristoError(0):
return err((vid,hike.error))
else:
# Hash as much of the `hike` as possible
let n = block:
let rc = db.leafToRootHasher hike
if rc.isErr:
return err(rc.error)
rc.value
roots.incl hike.root
if 0 < n:
# Backtrack and register remaining nodes. Note that in case *n == 0*,
# the root vertex has not been fully resolved yet.
#
# hike.legs: (leg[0], leg[1], .., leg[n-1], leg[n], ..)
# | | | |
# | <---- | <---- | <---- |
# | | |
# | backLink[] | downMost |
#
downMost[hike.legs[n].wp.vid] = BackVidValRef(
root: hike.root,
onBe: hike.legs[n].backend,
toVid: hike.legs[n-1].wp.vid)
for u in (n-1).countDown(1):
backLink[hike.legs[u].wp.vid] = BackVidValRef(
root: hike.root,
onBe: hike.legs[u].backend,
toVid: hike.legs[u-1].wp.vid)
elif n < 0:
completed.incl hike.root
# At least one full path leaf..root should have succeeded with labelling
# for each root.
if completed.len < roots.len:
return err((VertexID(0),HashifyLeafToRootAllFailed))
# Update remaining hashes
while 0 < downMost.len:
var
redo: BackVidTab
done: HashSet[VertexID]
for (vid,val) in downMost.pairs:
# Try to convert vertex to a node. This is possible only if all link
# references have Merkle hashes.
#
# Also `db.getVtx(vid)` => not nil as it was fetched earlier, already
let rc = db.getVtx(vid).toNode db
if rc.isErr:
# Cannot complete with this vertex, so do it later
redo[vid] = val
else:
# Update Merkle hash
let
key = rc.value.to(HashKey)
rx = db.updateHashKey(val.root, vid, key, val.onBe)
if rx.isErr:
return err((vid,rx.error))
done.incl vid
# Proceed with back link
let nextItem = backLink.getOrVoid val.toVid
if nextItem.isValid:
redo[val.toVid] = nextItem
# Make sure that the algorithm proceeds
if done.len == 0:
let error = HashifyCannotComplete
return err((VertexID(0),error))
# Clean up dups from `backLink` and restart `downMost`
for vid in done.items:
backLink.del vid
downMost = redo
ok completed
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------