nimbus-eth1/nimbus/db/aristo/aristo_desc/desc_structural.nim
Jacek Sieka 9d91191154
storage hike cache (#2484)
This PR adds a storage hike cache similar to the account hike cache
already present - this cache is less efficient because account storage
is already partically cached in the account ledger but nonetheless helps
keep hiking down.

Notably, there's an opportunity to optimise this cache and the others so
that they cooperate better insteado of overlapping, which is left for a
future PR.

This PR also fixes an O(N) memory usage for storage slots where the
delete would keep the full storage in a work list which on mainnet can
grow very large - the work list is replaced with a more conventional
recursive `O(log N)` approach.
2024-07-14 19:12:10 +02:00

284 lines
9.0 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie structural data types
## ================================================
##
{.push raises: [].}
import
std/[hashes, tables],
eth/common,
"."/[desc_error, desc_identifiers]
type
LeafTiePayload* = object
## Generalised key-value pair for a sub-trie. The main trie is the
## sub-trie with `root=VertexID(1)`.
leafTie*: LeafTie ## Full `Patricia Trie` path root-to-leaf
payload*: LeafPayload ## Leaf data payload (see below)
VertexType* = enum
## Type of `Aristo Trie` vertex
Leaf
Extension
Branch
AristoAccount* = object
## Application relevant part of an Ethereum account. Note that the storage
## data/tree reference is not part of the account (see `LeafPayload` below.)
nonce*: AccountNonce ## Some `uint64` type
balance*: UInt256
codeHash*: Hash256
PayloadType* = enum
## Type of leaf data.
RawData ## Generic data
AccountData ## `Aristo account` with vertex IDs links
StoData ## Slot storage data
LeafPayload* = object
## The payload type depends on the sub-tree used. The `VertexID(1)` rooted
## sub-tree only has `AccountData` type payload, stoID-based have StoData
## while generic have RawData
case pType*: PayloadType
of RawData:
rawBlob*: Blob ## Opaque data, default value
of AccountData:
account*: AristoAccount
stoID*: VertexID ## Storage vertex ID (if any)
of StoData:
stoData*: UInt256
VertexRef* = ref object of RootRef
## Vertex for building a hexary Patricia or Merkle Patricia Trie
case vType*: VertexType
of Leaf:
lPfx*: NibblesBuf ## Portion of path segment
lData*: LeafPayload ## Reference to data payload
of Extension:
ePfx*: NibblesBuf ## Portion of path segment
eVid*: VertexID ## Edge to vertex with ID `eVid`
of Branch:
bVid*: array[16,VertexID] ## Edge list with vertex IDs
NodeRef* = ref object of VertexRef
## Combined record for a *traditional* ``Merkle Patricia Tree` node merged
## with a structural `VertexRef` type object.
error*: AristoError ## Used for error signalling in RLP decoder
key*: array[16,HashKey] ## Merkle hash/es for vertices
# ----------------------
VidVtxPair* = object
## Handy helper structure
vid*: VertexID ## Table lookup vertex ID (if any)
vtx*: VertexRef ## Reference to vertex
SavedState* = object
## Last saved state
key*: Hash256 ## Some state hash (if any)
serial*: uint64 ## Generic identifier from application
LayerDeltaRef* = ref object
## Delta layers are stacked implying a tables hierarchy. Table entries on
## a higher level take precedence over lower layer table entries. So an
## existing key-value table entry of a layer on top supersedes same key
## entries on all lower layers. A missing entry on a higher layer indicates
## that the key-value pair might be fond on some lower layer.
##
## A zero value (`nil`, empty hash etc.) is considered am missing key-value
## pair. Tables on the `LayerDelta` may have stray zero key-value pairs for
## missing entries due to repeated transactions while adding and deleting
## entries. There is no need to purge redundant zero entries.
##
## As for `kMap[]` entries, there might be a zero value entriy relating
## (i.e. indexed by the same vertex ID) to an `sMap[]` non-zero value entry
## (of the same layer or a lower layer whatever comes first.) This entry
## is kept as a reminder that the hash value of the `kMap[]` entry needs
## to be re-compiled.
##
## The reasoning behind the above scenario is that every vertex held on the
## `sTab[]` tables must correspond to a hash entry held on the `kMap[]`
## tables. So a corresponding zero value or missing entry produces an
## inconsistent state that must be resolved.
##
sTab*: Table[RootedVertexID,VertexRef] ## Structural vertex table
kMap*: Table[RootedVertexID,HashKey] ## Merkle hash key mapping
vTop*: VertexID ## Last used vertex ID
accLeaves*: Table[Hash256, VertexRef] ## Account path -> VertexRef
stoLeaves*: Table[Hash256, VertexRef] ## Storage path -> VertexRef
LayerRef* = ref LayerObj
LayerObj* = object
## Hexary trie database layer structures. Any layer holds the full
## change relative to the backend.
delta*: LayerDeltaRef ## Most structural tables held as deltas
txUid*: uint ## Transaction identifier if positive
# ------------------------------------------------------------------------------
# Public helpers (misc)
# ------------------------------------------------------------------------------
func init*(T: type LayerRef): T =
## Constructor, returns empty layer
T(delta: LayerDeltaRef())
func hash*(node: NodeRef): Hash =
## Table/KeyedQueue/HashSet mixin
cast[pointer](node).hash
# ------------------------------------------------------------------------------
# Public helpers: `NodeRef` and `LeafPayload`
# ------------------------------------------------------------------------------
proc `==`*(a, b: LeafPayload): bool =
## Beware, potential deep comparison
if unsafeAddr(a) != unsafeAddr(b):
if a.pType != b.pType:
return false
case a.pType:
of RawData:
if a.rawBlob != b.rawBlob:
return false
of AccountData:
if a.account != b.account or
a.stoID != b.stoID:
return false
of StoData:
if a.stoData != b.stoData:
return false
true
proc `==`*(a, b: VertexRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a[]) != unsafeAddr(b[]):
if a.vType != b.vType:
return false
case a.vType:
of Leaf:
if a.lPfx != b.lPfx or a.lData != b.lData:
return false
of Extension:
if a.ePfx != b.ePfx or a.eVid != b.eVid:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != b.bVid[n]:
return false
true
proc `==`*(a, b: NodeRef): bool =
## Beware, potential deep comparison
if a.VertexRef != b.VertexRef:
return false
case a.vType:
of Extension:
if a.key[0] != b.key[0]:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != 0.VertexID and a.key[n] != b.key[n]:
return false
else:
discard
true
# ------------------------------------------------------------------------------
# Public helpers, miscellaneous functions
# ------------------------------------------------------------------------------
func dup*(pld: LeafPayload): LeafPayload =
## Duplicate payload.
case pld.pType:
of RawData:
LeafPayload(
pType: RawData,
rawBlob: pld.rawBlob)
of AccountData:
LeafPayload(
pType: AccountData,
account: pld.account,
stoID: pld.stoID)
of StoData:
LeafPayload(
pType: StoData,
stoData: pld.stoData
)
func dup*(vtx: VertexRef): VertexRef =
## Duplicate vertex.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if vtx.isNil:
VertexRef(nil)
else:
case vtx.vType:
of Leaf:
VertexRef(
vType: Leaf,
lPfx: vtx.lPfx,
lData: vtx.lData.dup)
of Extension:
VertexRef(
vType: Extension,
ePfx: vtx.ePfx,
eVid: vtx.eVid)
of Branch:
VertexRef(
vType: Branch,
bVid: vtx.bVid)
func dup*(node: NodeRef): NodeRef =
## Duplicate node.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if node.isNil:
NodeRef(nil)
else:
case node.vType:
of Leaf:
NodeRef(
vType: Leaf,
lPfx: node.lPfx,
lData: node.lData.dup,
key: node.key)
of Extension:
NodeRef(
vType: Extension,
ePfx: node.ePfx,
eVid: node.eVid,
key: node.key)
of Branch:
NodeRef(
vType: Branch,
bVid: node.bVid,
key: node.key)
func dup*(wp: VidVtxPair): VidVtxPair =
## Safe copy of `wp` argument
VidVtxPair(
vid: wp.vid,
vtx: wp.vtx.dup)
# ---------------
func to*(node: NodeRef; T: type VertexRef): T =
## Extract a copy of the `VertexRef` part from a `NodeRef`.
node.VertexRef.dup
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------