nimbus-eth1/nimbus/db/aristo/aristo_journal/journal_scheduler.nim
Jordan Hrycaj 9cc6e5a3aa
Aristo resume off line syncing on pre loaded database (#2203)
* Update some docu & messages

* Remove cruft from the ledger modules

* Must not overwrite genesis data on an initialised database

why:
  This will overwrite the global state of the Aristo single state DB.
  Otherwise resuming at the last synced state becomes impossible.

* Provide latest block number from journal

why:
  This relates the global state of the DB directly to the corresponding
  block number.

* Implemented unit test providing DB pre-load and resume
2024-05-22 13:41:14 +00:00

705 lines
22 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
import
std/[algorithm, sequtils, typetraits],
results,
".."/[aristo_constants, aristo_desc]
type
QidAction* = object
## Instruction for administering filter queue ID slots. The op-code is
## followed by one or two queue ID arguments. In case of a two arguments,
## the value of the second queue ID is never smaller than the first one.
op*: QidOp ## Action, followed by at most two queue IDs
qid*: QueueID ## Action argument
xid*: QueueID ## Second action argument for range argument
QidOp* = enum
Oops = 0
SaveQid ## Store new item
HoldQid ## Move/append range items to local queue
DequQid ## Store merged local queue items
DelQid ## Delete entry from last overflow queue
QuFilMap* = proc(qid: QueueID): Result[FilterID,void] {.gcsafe, raises: [].}
## A map `fn: QueueID -> FilterID` of type `QuFilMap` must preserve the
## order relation on the image of `fn()` defined as
##
## * `fn(fifo[j]) < fn(fifo[i])` <=> `i < j`
##
## where `[]` is defined as the index function `[]: {0 .. N-1} -> QueueID`,
## `N = fifo.len`.
##
## Any injective function `fn()` (aka monomorphism) will do.
##
## This definition decouples access to ordered journal records from the
## storage of these records on the database. The records are accessed via
## `QueueID` type keys while the order is defined by a `FilterID` type
## scalar.
##
## In order to flag an error, `err()` must be returned.
const
ZeroQidPair = (QueueID(0),QueueID(0))
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
func `<`(a: static[uint]; b: QueueID): bool = QueueID(a) < b
func globalQid(queue: int, qid: QueueID): QueueID =
QueueID((queue.uint64 shl 62) or qid.uint64)
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
func fifoLen(
fifo: (QueueID,QueueID);
wrap: QueueID;
): uint =
## Number of entries in wrap-arounfd fifo organised with `fifo[0]` is the
## oldest entry and`fifo[1]` is the latest/newest entry.
##
if fifo[0] == 0:
return 0
if fifo[0] <= fifo[1]:
# Filling up
# ::
# | :
# | fifo[0]--> 3
# | 4
# | 5 <--fifo[1]
# | :
#
return ((fifo[1] + 1) - fifo[0]).uint
else:
# After wrap aound
# ::
# | :
# | 3 <--fifo[1]
# | 4
# | fifo[0]--> 5
# | :
# | wrap
return ((fifo[1] + 1) + (wrap - fifo[0])).uint
func fifoAdd(
fifo: (QueueID,QueueID);
wrap: QueueID;
): tuple[doDel: QueueID, fifo: (QueueID,QueueID)] =
## Add an entry to the wrap-arounfd fifo organised with `fifo[0]` is the
## oldest entry and`fifo[1]` is the latest/newest entry.
##
if fifo[0] == 0:
return (QueueID(0), (QueueID(1),QueueID(1)))
if fifo[0] <= fifo[1]:
if fifo[1] < wrap:
# Filling up
# ::
# | :
# | fifo[0]--> 3
# | 4
# | 5 <--fifo[1]
# | :
#
return (QueueID(0), (fifo[0],fifo[1]+1))
elif 1 < fifo[0]:
# Wrapping
# ::
# | :
# | fifo[0]--> 3
# | 4
# | :
# | wrap <--fifo[1]
#
return (QueueID(0), (fifo[0],QueueID(1)))
elif 1 < wrap:
# Wrapping and flushing out
# ::
# | fifo[0]--> 1
# | 2
# | :
# | wrap <--fifo[1]
#
return (QueueID(1), (QueueID(2),QueueID(1)))
else:
# Single entry FIFO
return (QueueID(1), (QueueID(1),QueueID(1)))
else:
if fifo[1] + 1 < fifo[0]:
# Filling up
# ::
# | :
# | 3 <--fifo[1]
# | 4
# | fifo[0]--> 5
# | :
# | wrap
return (QueueID(0), (fifo[0],fifo[1]+1))
elif fifo[0] < wrap:
# Flushing out
# ::
# | :
# | 4 <--fifo[1]
# | fifo[0]--> 5
# | :
# | wrap
return (fifo[0], (fifo[0]+1,fifo[1]+1))
else:
# Wrapping and flushing out
# ::
# | :
# | wrap-1 <--fifo[1]
# | fifo[0]--> wrap
return (wrap, (QueueID(1),wrap))
func fifoDel(
fifo: (QueueID,QueueID);
nDel: uint;
wrap: QueueID;
): tuple[doDel: seq[(QueueID,QueueID)], fifo: (QueueID,QueueID)] =
## Delete a the range `nDel` of filter IDs from the FIFO. The entries to be
## deleted are taken from the oldest ones added.
##
if fifo[0] == 0:
return (EmptyQidPairSeq, ZeroQidPair)
if fifo[0] <= fifo[1]:
# Take off the left end from `fifo[0] .. fifo[1]`
# ::
# | :
# | fifo[0]--> 3 ^
# | 4 | to be deleted
# | 5 v
# | 6 <--fifo[1]
# | :
#
if nDel.uint64 <= fifo[1] - fifo[0]:
return (@[(fifo[0], fifo[0] + nDel - 1)], (fifo[0] + nDel, fifo[1]))
else:
return (@[fifo], ZeroQidPair)
else:
if nDel.uint64 <= (wrap - fifo[0] + 1):
# Take off the left end from `fifo[0] .. wrap`
# ::
# | :
# | 3 <--fifo[1]
# | 4
# | fifo[0]--> 5 ^
# | 6 | to be deleted
# | 7 v
# | :
# | wrap
#
let topRange = (fifo[0], fifo[0] + nDel - 1)
if nDel.uint64 < (wrap - fifo[0] + 1):
return (@[topRange], (fifo[0] + nDel, fifo[1]))
else:
return (@[topRange], (QueueID(1), fifo[1]))
else:
# Interval `fifo[0] .. wrap` fully deleted, check `1 .. fifo[0]`
# ::
# | 1 ^
# | 2 | to be deleted
# | : v
# | 6
# | 7<--fifo[1]
# | fifo[0]--> 8 ^
# | 9 | to be deleted
# | : :
# | wrap v
#
let
topRange = (fifo[0], wrap)
nDelLeft = nDel.uint64 - (wrap - fifo[0] + 1)
# Take off the left end from `QueueID(1) .. fifo[1]`
if nDelLeft <= fifo[1] - QueueID(0):
let bottomRange = (QueueID(1), QueueID(nDelLeft))
if nDelLeft < fifo[1] - QueueID(0):
return (@[bottomRange, topRange], (QueueID(nDelLeft+1), fifo[1]))
else:
return (@[bottomRange, topRange], ZeroQidPair)
else:
# Delete all available
return (@[(QueueID(1), fifo[1]), (fifo[0], wrap)], ZeroQidPair)
func capacity(
ctx: openArray[tuple[size, width: int]]; # Schedule layout
): tuple[maxQueue: int, minCovered: int, maxCovered: int] =
## Number of maximally stored and covered queued entries for the argument
## layout `ctx`. The resulting value of `maxQueue` entry is the maximal
## number of database slots needed, the `minCovered` and `maxCovered` entry
## indicate the rancge of the backlog foa a fully populated database.
var step = 1
for n in 0 ..< ctx.len:
step *= ctx[n].width + 1
let size = ctx[n].size + ctx[(n+1) mod ctx.len].width
result.maxQueue += size.int
result.minCovered += (ctx[n].size * step).int
result.maxCovered += (size * step).int
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func capacity*(
ctx: openArray[tuple[size, width, wrap: int]]; # Schedule layout
): tuple[maxQueue: int, minCovered: int, maxCovered: int] =
## Variant of `capacity()`.
ctx.toSeq.mapIt((it[0],it[1])).capacity
func capacity*(
journal: QidSchedRef; # Cascaded fifos descriptor
): tuple[maxQueue: int, minCovered: int, maxCovered: int] =
## Number of maximally stored and covered queued entries for the layout of
## argument `journal`. The resulting value of `maxQueue` entry is the maximal
## number of database slots needed, the `minCovered` and `maxCovered` entry
## indicate the rancge of the backlog foa a fully populated database.
journal.ctx.q.toSeq.mapIt((it[0].int,it[1].int)).capacity()
func addItem*(
journal: QidSchedRef; # Cascaded fifos descriptor
): tuple[exec: seq[QidAction], journal: QidSchedRef] =
## Get the instructions for adding a new slot to the cascades queues. The
## argument `journal` is a complete state of the addresses of a cascaded
## *FIFO* when applied to a database. Only the *FIFO* queue addresses are
## needed in order to describe how to add another item.
##
## The function returns a list of instructions what to do when adding a new
## item and the new state of the cascaded *FIFO*. The following instructions
## may be returned:
## ::
## SaveQid <queue-id> -- Store a new item under the address
## -- <queue-id> on the database.
##
## HoldQid <from-id>..<to-id> -- Move the records referred to by the
## -- argument addresses from the database to
## -- the right end of the local hold queue.
## -- The age of the items on the hold queue
## -- increases left to right.
##
## DequQid <queue-id> -- Merge items from the hold queue into a
## -- new item and store it under the address
## -- <queue-id> on the database. Clear the
## -- the hold queue and the corresponding
## -- items on the database.
##
## DelQid <queue-id> -- Delete item. This happens if the last
## -- oberflow queue needs to make space for
## -- another item.
##
let
ctx = journal.ctx.q
var
state = journal.state
deferred: seq[QidAction] # carry over to next sub-queue
revActions: seq[QidAction] # instructions in reverse order
for n in 0 ..< ctx.len:
if state.len < n + 1:
state.setLen(n + 1)
let
overlapWidth = ctx[(n+1) mod ctx.len].width
carryOverSize = ctx[n].size + overlapWidth
stateLen = state[n].fifoLen ctx[n].wrap
if stateLen < carryOverSize:
state[n] = state[n].fifoAdd(ctx[n].wrap).fifo
let qQidAdded = n.globalQid state[n][1]
if 0 < n:
revActions.add QidAction(op: DequQid, qid: qQidAdded)
else:
revActions.add QidAction(op: SaveQid, qid: qQidAdded)
if 0 < deferred.len:
revActions &= deferred
deferred.setLen(0)
break
else:
# Full queue segment, carry over to next one
let
extra = stateLen - carryOverSize # should be zero
qDel = state[n].fifoDel(extra + overlapWidth + 1, ctx[n].wrap)
qAdd = qDel.fifo.fifoAdd ctx[n].wrap
qFidAdded = n.globalQid qAdd.fifo[1]
if 0 < n:
revActions.add QidAction(op: DequQid, qid: qFidAdded)
else:
revActions.add QidAction(op: SaveQid, qid: qFidAdded)
if 0 < deferred.len:
revActions &= deferred
deferred.setLen(0)
for w in qDel.doDel:
deferred.add QidAction(
op: HoldQid,
qid: n.globalQid w[0],
xid: n.globalQid w[1])
state[n] = qAdd.fifo
# End loop
# Delete item from final overflow queue. There is only one as `overlapWidth`
# is `ctx[0]` which is `0`
if 0 < deferred.len:
revActions.add QidAction(
op: DelQid,
qid: deferred[0].qid)
(revActions.reversed, QidSchedRef(ctx: journal.ctx, state: state))
func fetchItems*(
journal: QidSchedRef; # Cascaded fifos descriptor
size: int; # Leading items to merge
): tuple[exec: seq[QidAction], journal: QidSchedRef] =
## Get the instructions for extracting the latest `size` items from the
## cascaded queues. argument `journal` is a complete state of the addresses of
## a cascaded *FIFO* when applied to a database. Only the *FIFO* queue
## addresses are used in order to describe how to add another item.
##
## The function returns a list of instructions what to do when adding a new
## item and the new state of the cascaded *FIFO*. The following instructions
## may be returned:
## ::
## HoldQid <from-id>..<to-id> -- Move the records accessed by the argument
## -- addresses from the database to the right
## -- end of the local hold queue. The age of
## -- the items on the hold queue increases
## -- left to right.
##
## The extracted items will then be available from the hold queue.
var
actions: seq[QidAction]
state = journal.state
if 0 < size:
var size = size.uint64
for n in 0 ..< journal.state.len:
let q = journal.state[n]
if q[0] == 0:
discard
elif q[0] <= q[1]:
# Single file
# ::
# | :
# | q[0]--> 3
# | 4
# | 5 <--q[1]
# | :
#
let qSize = q[1] - q[0] + 1
if size <= qSize:
if size < qSize:
state[n][1] = q[1] - size
elif state.len == n + 1:
state.setLen(n)
else:
state[n] = (QueueID(0), QueueID(0))
actions.add QidAction(
op: HoldQid,
qid: n.globalQid(q[1] - size + 1),
xid: n.globalQid q[1])
break
actions.add QidAction(
op: HoldQid,
qid: n.globalQid q[0],
xid: n.globalQid q[1])
state[n] = (QueueID(0), QueueID(0))
size -= qSize # Otherwise continue
else:
# Wrap aound, double files
# ::
# | :
# | 3 <--q[1]
# | 4
# | q[0]--> 5
# | :
# | wrap
let
wrap = journal.ctx.q[n].wrap
qSize1 = q[1] - QueueID(0)
if size <= qSize1:
if size == qSize1:
state[n][1] = wrap
else:
state[n][1] = q[1] - size
actions.add QidAction(
op: HoldQid,
qid: n.globalQid(q[1] - size + 1),
xid: n.globalQid q[1])
break
actions.add QidAction(
op: HoldQid,
qid: n.globalQid QueueID(1),
xid: n.globalQid q[1])
size -= qSize1 # Otherwise continue
let qSize0 = wrap - q[0] + 1
if size <= qSize0:
if size < qSize0:
state[n][1] = wrap - size
elif state.len == n + 1:
state.setLen(n)
else:
state[n] = (QueueID(0), QueueID(0))
actions.add QidAction(
op: HoldQid,
qid: n.globalQid wrap - size + 1,
xid: n.globalQid wrap)
break
actions.add QidAction(
op: HoldQid,
qid: n.globalQid q[0],
xid: n.globalQid wrap)
size -= qSize0
state[n] = (QueueID(0), QueueID(0))
(actions, QidSchedRef(ctx: journal.ctx, state: state))
func lengths*(
journal: QidSchedRef; # Cascaded fifos descriptor
): seq[int] =
## Return the list of lengths for all cascaded sub-fifos.
for n in 0 ..< journal.state.len:
result.add journal.state[n].fifoLen(journal.ctx.q[n].wrap).int
func len*(
journal: QidSchedRef; # Cascaded fifos descriptor
): int =
## Size of the journal
journal.lengths.foldl(a + b, 0)
func `[]`*(
journal: QidSchedRef; # Cascaded fifos descriptor
inx: int; # Index into latest items
): QueueID =
## Get the queue ID of the `inx`-th `journal` entry where index `0` refers to
## the entry most recently added, `1` the one before, etc. If there is no
## such entry `QueueID(0)` is returned.
if 0 <= inx:
var inx = inx.uint64
for n in 0 ..< journal.state.len:
let q = journal.state[n]
if q[0] == 0:
discard
elif q[0] <= q[1]:
# Single file
# ::
# | :
# | q[0]--> 3
# | 4
# | 5 <--q[1]
# | :
#
let qInxMax = q[1] - q[0]
if inx <= qInxMax:
return n.globalQid(q[1] - inx)
inx -= qInxMax + 1 # Otherwise continue
else:
# Wrap aound, double files
# ::
# | :
# | 3 <--q[1]
# | 4
# | q[0]--> 5
# | :
# | wrap
let qInxMax1 = q[1] - QueueID(1)
if inx <= qInxMax1:
return n.globalQid(q[1] - inx)
inx -= qInxMax1 + 1 # Otherwise continue
let
wrap = journal.ctx.q[n].wrap
qInxMax0 = wrap - q[0]
if inx <= qInxMax0:
return n.globalQid(wrap - inx)
inx -= qInxMax0 + 1 # Otherwise continue
func `[]`*(
journal: QidSchedRef; # Cascaded fifos descriptor
bix: BackwardsIndex; # Index into latest items
): QueueID =
## Variant of `[]` for providing `[^bix]`.
journal[journal.len - bix.distinctBase]
func `[]`*(
journal: QidSchedRef; # Cascaded fifos descriptor
qid: QueueID; # Index into latest items
): int =
## ..
if QueueID(0) < qid:
let
chn = (qid.uint64 shr 62).int
qid = (qid.uint64 and 0x3fff_ffff_ffff_ffffu64).QueueID
if chn < journal.state.len:
var offs = 0
for n in 0 ..< chn:
offs += journal.state[n].fifoLen(journal.ctx.q[n].wrap).int
let q = journal.state[chn]
if q[0] <= q[1]:
# Single file
# ::
# | :
# | q[0]--> 3
# | 4
# | 5 <--q[1]
# | :
#
if q[0] <= qid and qid <= q[1]:
return offs + (q[1] - qid).int
else:
# Wrap aound, double files
# ::
# | :
# | 3 <--q[1]
# | 4
# | q[0]--> 5
# | :
# | wrap
#
if QueueID(1) <= qid and qid <= q[1]:
return offs + (q[1] - qid).int
if q[0] <= qid:
let wrap = journal.ctx.q[chn].wrap
if qid <= wrap:
return offs + (q[1] - QueueID(0)).int + (wrap - qid).int
-1
proc le*(
journal: QidSchedRef; # Cascaded fifos descriptor
fid: FilterID; # Upper (or right) bound
fn: QuFilMap; # QueueID/FilterID mapping
forceEQ = false; # Check for strict equality
): QueueID =
## Find the `qid` address of type `QueueID` with `fn(qid) <= fid` with
## maximal `fn(qid)`. The requirements on argument map `fn()` of type
## `QuFilMap` has been commented on at the type definition.
##
## This function returns `QueueID(0)` if `fn()` returns `err()` at some
## stage of the algorithm applied here.
##
var
left = 0
right = journal.len - 1
template toFid(qid: QueueID): FilterID =
fn(qid).valueOr:
return QueueID(0) # exit hosting function environment
# The algorithm below trys to avoid `toFid()` as much as possible because
# it might invoke some extra database lookup.
if 0 <= right:
# Check left fringe
let
maxQid = journal[left]
maxFid = maxQid.toFid
if maxFid <= fid:
if forceEQ and maxFid != fid:
return QueueID(0)
return maxQid
# So `fid < journal[left]`
# Check right fringe
let
minQid = journal[right]
minFid = minQid.toFid
if fid <= minFid:
if minFid == fid:
return minQid
return QueueID(0)
# So `journal[right] < fid`
# Bisection
var rightQid = minQid # Might be used as end result
while 1 < right - left:
let
pivot = (left + right) div 2
pivQid = journal[pivot]
pivFid = pivQid.toFid
#
# Example:
# ::
# FilterID: 100 70 33
# inx: left ... pivot ... right
# fid: 77
#
# with `journal[left].toFid > fid > journal[right].toFid`
#
if pivFid < fid: # fid >= journal[half].toFid:
right = pivot
rightQid = pivQid
elif fid < pivFid: # journal[half].toFid > fid
left = pivot
else:
return pivQid
# Now: `journal[right].toFid < fid < journal[left].toFid`
# (and `right == left+1`).
if not forceEQ:
# Make sure that `journal[right].toFid` exists
if fn(rightQid).isOk:
return rightQid
# Otherwise QueueID(0)
proc eq*(
journal: QidSchedRef; # Cascaded fifos descriptor
fid: FilterID; # Filter ID to search for
fn: QuFilMap; # QueueID/FilterID mapping
): QueueID =
## Variant of `le()` for strict equality.
journal.le(fid, fn, forceEQ = true)
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------