nimbus-eth1/fluffy/content_db.nim
Kim De Mey 9430619272
Remove Accumulator as network content type and add it to binary (#1267)
Portal master accumulator was removed from the network specs as a
content type shared on the network, as since the merge this is
a finite accumulator (pre-merge only).
So in this PR the accumulator gets removed as network type and
gets instead baked into the library. Building it is done by
seperate tooling (eth_data_exporter).
Because of this a lot of extra code can be removed that was
located in history_network, content_db, portal_protocol, etc.

Also removed to option to build the accumulator at start-up
of fluffy as this takes several minutes making it not viable.
It can still be loaded from a provided file however.

The ssz accumulator file is for now stored in the recently
created portal-spec-tests repository.
2022-10-17 20:38:51 +02:00

308 lines
10 KiB
Nim

# Nimbus
# Copyright (c) 2021-2022 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.push raises: [Defect].}
import
std/[options, heapqueue],
eth/db/kvstore,
eth/db/kvstore_sqlite3,
stint,
./network/state/state_content
export kvstore_sqlite3
# This version of content db is the most basic, simple solution where data is
# stored no matter what content type or content network in the same kvstore with
# the content id as key. The content id is derived from the content key, and the
# deriviation is different depending on the content type. As we use content id,
# this part is currently out of the scope / API of the ContentDB.
# In the future it is likely that that either:
# 1. More kvstores are added per network, and thus depending on the network a
# different kvstore needs to be selected.
# 2. Or more kvstores are added per network and per content type, and thus
# content key fields are required to access the data.
# 3. Or databases are created per network (and kvstores pre content type) and
# thus depending on the network the right db needs to be selected.
type
RowInfo = tuple
contentId: array[32, byte]
payloadLength: int64
distance: array[32, byte]
ObjInfo* = object
contentId*: array[32, byte]
payloadLength*: int64
distFrom*: UInt256
ContentDB* = ref object
kv: KvStoreRef
maxSize: uint32
sizeStmt: SqliteStmt[NoParams, int64]
unusedSizeStmt: SqliteStmt[NoParams, int64]
vacStmt: SqliteStmt[NoParams, void]
contentSizeStmt: SqliteStmt[NoParams, int64]
getAllOrderedByDistanceStmt: SqliteStmt[array[32, byte], RowInfo]
PutResultType* = enum
ContentStored, DbPruned
PutResult* = object
case kind*: PutResultType
of ContentStored:
discard
of DbPruned:
furthestStoredElementDistance*: UInt256
fractionOfDeletedContent*: float64
numOfDeletedElements*: int64
func xorDistance(
a: openArray[byte],
b: openArray[byte]
): Result[seq[byte], cstring] {.cdecl.} =
var s: seq[byte] = newSeq[byte](32)
if len(a) != 32 or len(b) != 32:
return err("Blobs should have 32 byte length")
var i = 0
while i < 32:
s[i] = a[i] xor b[i]
inc i
return ok(s)
template expectDb(x: auto): untyped =
# There's no meaningful error handling implemented for a corrupt database or
# full disk - this requires manual intervention, so we'll panic for now
x.expect("working database (disk broken/full?)")
proc new*(
T: type ContentDB, path: string, maxSize: uint32, inMemory = false):
ContentDB =
let db =
if inMemory:
SqStoreRef.init("", "fluffy-test", inMemory = true).expect(
"working database (out of memory?)")
else:
SqStoreRef.init(path, "fluffy").expectDb()
db.registerCustomScalarFunction("xorDistance", xorDistance)
.expect("Couldn't register custom xor function")
let getSizeStmt = db.prepareStmt(
"SELECT page_count * page_size as size FROM pragma_page_count(), pragma_page_size();",
NoParams, int64).get()
let unusedSize = db.prepareStmt(
"SELECT freelist_count * page_size as size FROM pragma_freelist_count(), pragma_page_size();",
NoParams, int64).get()
let vacStmt = db.prepareStmt(
"VACUUM;",
NoParams, void).get()
let kvStore = kvStore db.openKvStore().expectDb()
let contentSizeStmt = db.prepareStmt(
"SELECT SUM(length(value)) FROM kvstore",
NoParams, int64
).get()
let getAllOrderedByDistanceStmt = db.prepareStmt(
"SELECT key, length(value), xorDistance(?, key) as distance FROM kvstore ORDER BY distance DESC",
array[32, byte], RowInfo
).get()
ContentDB(
kv: kvStore,
maxSize: maxSize,
sizeStmt: getSizeStmt,
vacStmt: vacStmt,
unusedSizeStmt: unusedSize,
contentSizeStmt: contentSizeStmt,
getAllOrderedByDistanceStmt: getAllOrderedByDistanceStmt
)
## Private KvStoreRef Calls
proc get(kv: KvStoreRef, key: openArray[byte]): Option[seq[byte]] =
var res: Option[seq[byte]]
proc onData(data: openArray[byte]) = res = some(@data)
discard kv.get(key, onData).expectDb()
return res
proc getSszDecoded(kv: KvStoreRef, key: openArray[byte], T: type auto): Option[T] =
let res = kv.get(key)
if res.isSome():
try:
some(SSZ.decode(res.get(), T))
except SszError:
raiseAssert("Stored data should always be serialized correctly")
else:
none(T)
## Private ContentDB calls
proc get(db: ContentDB, key: openArray[byte]): Option[seq[byte]] =
db.kv.get(key)
proc put(db: ContentDB, key, value: openArray[byte]) =
db.kv.put(key, value).expectDb()
proc contains(db: ContentDB, key: openArray[byte]): bool =
db.kv.contains(key).expectDb()
proc del(db: ContentDB, key: openArray[byte]) =
db.kv.del(key).expectDb()
proc getSszDecoded*(
db: ContentDB, key: openArray[byte], T: type auto): Option[T] =
db.kv.getSszDecoded(key, T)
proc reclaimSpace*(db: ContentDB): void =
## Runs sqlite VACUUM commands which rebuilds the db, repacking it into a
## minimal amount of disk space.
## Ideal mode of operation, is to run it after several deletes.
## Another options would be to run 'PRAGMA auto_vacuum = FULL;' statement at
## the start of db to leave it up to sqlite to clean up
db.vacStmt.exec().expectDb()
proc size*(db: ContentDB): int64 =
## Retrun current size of DB as product of sqlite page_count and page_size
## https://www.sqlite.org/pragma.html#pragma_page_count
## https://www.sqlite.org/pragma.html#pragma_page_size
## It returns total size of db i.e both data and metadata used to store content
## also it is worth noting that when deleting content, size may lags behind due
## to the way how deleting works in sqlite.
## Good description can be found in: https://www.sqlite.org/lang_vacuum.html
var size: int64 = 0
discard (db.sizeStmt.exec do(res: int64):
size = res).expectDb()
return size
proc unusedSize(db: ContentDB): int64 =
## Returns the total size of the pages which are unused by the database,
## i.e they can be re-used for new content.
var size: int64 = 0
discard (db.unusedSizeStmt.exec do(res: int64):
size = res).expectDb()
return size
proc realSize*(db: ContentDB): int64 =
db.size() - db.unusedSize()
proc contentSize(db: ContentDB): int64 =
## Returns total size of content stored in DB
var size: int64 = 0
discard (db.contentSizeStmt.exec do(res: int64):
size = res).expectDb()
return size
## Public ContentId based ContentDB calls
# TODO: Could also decide to use the ContentKey SSZ bytestring, as this is what
# gets send over the network in requests, but that would be a bigger key. Or the
# same hashing could be done on it here.
# However ContentId itself is already derived through different digests
# depending on the content type, and this ContentId typically needs to be
# checked with the Radius/distance of the node anyhow. So lets see how we end up
# using this mostly in the code.
proc get*(db: ContentDB, key: ContentId): Option[seq[byte]] =
# TODO: Here it is unfortunate that ContentId is a uint256 instead of Digest256.
db.get(key.toByteArrayBE())
proc put*(db: ContentDB, key: ContentId, value: openArray[byte]) =
db.put(key.toByteArrayBE(), value)
proc contains*(db: ContentDB, key: ContentId): bool =
db.contains(key.toByteArrayBE())
proc del*(db: ContentDB, key: ContentId) =
db.del(key.toByteArrayBE())
proc getSszDecoded*(db: ContentDB, key: ContentId, T: type auto): Option[T] =
db.getSszDecoded(key.toByteArrayBE(), T)
proc deleteContentFraction(
db: ContentDB,
target: UInt256,
fraction: float64): (UInt256, int64, int64, int64) =
## Deletes at most `fraction` percent of content form database.
## First, content furthest from provided `target` is deleted.
doAssert(
fraction > 0 and fraction < 1,
"Deleted fraction should be > 0 and < 1"
)
let totalContentSize = db.contentSize()
let bytesToDelete = int64(fraction * float64(totalContentSize))
var numOfDeletedElements: int64 = 0
var ri: RowInfo
var bytesDeleted: int64 = 0
let targetBytes = target.toByteArrayBE()
for e in db.getAllOrderedByDistanceStmt.exec(targetBytes, ri):
if bytesDeleted + ri.payloadLength < bytesToDelete:
db.del(ri.contentId)
bytesDeleted = bytesDeleted + ri.payloadLength
inc numOfDeletedElements
else:
return (
UInt256.fromBytesBE(ri.distance),
bytesDeleted,
totalContentSize,
numOfDeletedElements
)
proc put*(
db: ContentDB,
key: ContentId,
value: openArray[byte],
target: UInt256): PutResult =
db.put(key, value)
# We use real size for our pruning threshold, which means that database file
# will reach size specified in db.maxSize, and will stay that size thorough
# node life time, as after content deletion free pages will be re used.
# TODO:
# 1. Devise vacuum strategy - after few pruning cycles database can become
# fragmented which may impact performance, so at some point in time `VACUUM`
# will need to be run to defragment the db.
# 2. Deal with the edge case where a user configures max db size lower than
# current db.size(). With such config the database would try to prune itself with
# each addition.
let dbSize = db.realSize()
if dbSize < int64(db.maxSize):
return PutResult(kind: ContentStored)
else:
# TODO Add some configuration for this magic number
let (
furthestNonDeletedElement,
deletedBytes,
totalContentSize,
deletedElements
) =
db.deleteContentFraction(target, 0.25)
let deletedFraction = float64(deletedBytes) / float64(totalContentSize)
return PutResult(
kind: DbPruned,
furthestStoredElementDistance: furthestNonDeletedElement,
fractionOfDeletedContent: deletedFraction,
numOfDeletedElements: deletedElements)