nimbus-eth1/nimbus/db/aristo/aristo_layers.nim

267 lines
9.0 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
{.push raises: [].}
import
std/[sequtils, sets, tables],
eth/common,
results,
./aristo_desc
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
func dup(sTab: Table[RootedVertexID,VertexRef]): Table[RootedVertexID,VertexRef] =
## Explicit dup for `VertexRef` values
for (k,v) in sTab.pairs:
result[k] = v.dup
# ------------------------------------------------------------------------------
# Public getters: lazy value lookup for read only versions
# ------------------------------------------------------------------------------
func vTop*(db: AristoDbRef): VertexID =
db.top.delta.vTop
# ------------------------------------------------------------------------------
# Public getters/helpers
# ------------------------------------------------------------------------------
func nLayersVtx*(db: AristoDbRef): int =
## Number of vertex ID/vertex entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappings held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.delta.sTab.len).foldl(a + b, db.top.delta.sTab.len)
func nLayersKey*(db: AristoDbRef): int =
## Number of vertex ID/key entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappingss held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.delta.kMap.len).foldl(a + b, db.top.delta.kMap.len)
# ------------------------------------------------------------------------------
# Public functions: getter variants
# ------------------------------------------------------------------------------
func layersGetVtx*(db: AristoDbRef; rvid: RootedVertexID): Opt[VertexRef] =
## Find a vertex on the cache layers. An `ok()` result might contain a
## `nil` vertex if it is stored on the cache that way.
##
db.top.delta.sTab.withValue(rvid, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.sTab.withValue(rvid, item):
return Opt.some(item[])
Opt.none(VertexRef)
func layersGetVtxOrVoid*(db: AristoDbRef; rvid: RootedVertexID): VertexRef =
## Simplified version of `layersGetVtx()`
db.layersGetVtx(rvid).valueOr: VertexRef(nil)
func layersGetKey*(db: AristoDbRef; rvid: RootedVertexID): Opt[HashKey] =
## Find a hash key on the cache layers. An `ok()` result might contain a void
## hash key if it is stored on the cache that way.
##
db.top.delta.kMap.withValue(rvid, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.kMap.withValue(rvid, item):
return ok(item[])
Opt.none(HashKey)
func layersGetKeyOrVoid*(db: AristoDbRef; rvid: RootedVertexID): HashKey =
## Simplified version of `layersGetKey()`
db.layersGetKey(rvid).valueOr: VOID_HASH_KEY
func layersGetAccLeaf*(db: AristoDbRef; accPath: Hash256): Opt[VertexRef] =
db.top.delta.accLeaves.withValue(accPath, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.accLeaves.withValue(accPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
func layersGetStoLeaf*(db: AristoDbRef; mixPath: Hash256): Opt[VertexRef] =
db.top.delta.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
# ------------------------------------------------------------------------------
# Public functions: setter variants
# ------------------------------------------------------------------------------
func layersPutVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
vtx: VertexRef;
) =
## Store a (potentally empty) vertex on the top layer
db.top.delta.sTab[rvid] = vtx
func layersResVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
) =
## Shortcut for `db.layersPutVtx(vid, VertexRef(nil))`. It is sort of the
## equivalent of a delete function.
db.layersPutVtx(rvid, VertexRef(nil))
func layersPutKey*(
db: AristoDbRef;
rvid: RootedVertexID;
key: HashKey;
) =
## Store a (potentally void) hash key on the top layer
db.top.delta.kMap[rvid] = key
func layersResKey*(db: AristoDbRef; rvid: RootedVertexID) =
## Shortcut for `db.layersPutKey(vid, VOID_HASH_KEY)`. It is sort of the
## equivalent of a delete function.
db.layersPutKey(rvid, VOID_HASH_KEY)
proc layersUpdateVtx*(
db: AristoDbRef; # Database, top layer
rvid: RootedVertexID;
vtx: VertexRef; # Vertex to add
) =
## Update a vertex at `rvid` and reset its associated key entry
db.layersPutVtx(rvid, vtx)
db.layersResKey(rvid)
func layersPutAccLeaf*(db: AristoDbRef; accPath: Hash256; leafVtx: VertexRef) =
db.top.delta.accLeaves[accPath] = leafVtx
func layersPutStoLeaf*(db: AristoDbRef; mixPath: Hash256; leafVtx: VertexRef) =
db.top.delta.stoLeaves[mixPath] = leafVtx
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func layersMergeOnto*(src: LayerRef; trg: var LayerObj) =
## Merges the argument `src` into the argument `trg` and returns `trg`. For
## the result layer, the `txUid` value set to `0`.
##
trg.txUid = 0
for (vid,vtx) in src.delta.sTab.pairs:
trg.delta.sTab[vid] = vtx
for (vid,key) in src.delta.kMap.pairs:
trg.delta.kMap[vid] = key
trg.delta.vTop = src.delta.vTop
for (accPath,leafVtx) in src.delta.accLeaves.pairs:
trg.delta.accLeaves[accPath] = leafVtx
for (mixPath,leafVtx) in src.delta.stoLeaves.pairs:
trg.delta.stoLeaves[mixPath] = leafVtx
func layersCc*(db: AristoDbRef; level = high(int)): LayerRef =
## Provide a collapsed copy of layers up to a particular transaction level.
## If the `level` argument is too large, the maximum transaction level is
## returned. For the result layer, the `txUid` value set to `0`.
##
let layers = if db.stack.len <= level: db.stack & @[db.top]
else: db.stack[0 .. level]
# Set up initial layer (bottom layer)
result = LayerRef(
delta: LayerDeltaRef(
sTab: layers[0].delta.sTab.dup, # explicit dup for ref values
kMap: layers[0].delta.kMap,
vTop: layers[^1].delta.vTop,
accLeaves: layers[0].delta.accLeaves,
stoLeaves: layers[0].delta.stoLeaves,
))
# Consecutively merge other layers on top
for n in 1 ..< layers.len:
for (vid,vtx) in layers[n].delta.sTab.pairs:
result.delta.sTab[vid] = vtx
for (vid,key) in layers[n].delta.kMap.pairs:
result.delta.kMap[vid] = key
for (accPath,vtx) in layers[n].delta.accLeaves.pairs:
result.delta.accLeaves[accPath] = vtx
for (mixPath,vtx) in layers[n].delta.stoLeaves.pairs:
result.delta.stoLeaves[mixPath] = vtx
# ------------------------------------------------------------------------------
# Public iterators
# ------------------------------------------------------------------------------
iterator layersWalkVtx*(
db: AristoDbRef;
seen: var HashSet[VertexID];
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Walk over all `(VertexID,VertexRef)` pairs on the cache layers. Note that
## entries are unsorted.
##
## The argument `seen` collects a set of all visited vertex IDs including
## the one with a zero vertex which are othewise skipped by the iterator.
## The `seen` argument must not be modified while the iterator is active.
##
for (rvid,vtx) in db.top.delta.sTab.pairs:
yield (rvid,vtx)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,vtx) in w.delta.sTab.pairs:
if rvid.vid notin seen:
yield (rvid,vtx)
seen.incl rvid.vid
iterator layersWalkVtx*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Variant of `layersWalkVtx()`.
var seen: HashSet[VertexID]
for (rvid,vtx) in db.layersWalkVtx seen:
yield (rvid,vtx)
iterator layersWalkKey*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, key: HashKey] =
## Walk over all `(VertexID,HashKey)` pairs on the cache layers. Note that
## entries are unsorted.
var seen: HashSet[VertexID]
for (rvid,key) in db.top.delta.kMap.pairs:
yield (rvid,key)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,key) in w.delta.kMap.pairs:
if rvid.vid notin seen:
yield (rvid,key)
seen.incl rvid.vid
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------