nimbus-eth1/nimbus/db/aristo/aristo_merge/merge_payload_helper.nim
Jordan Hrycaj a84a2131cd
No ext update (#2494)
* Imported/rebase from `no-ext`, PR #2485

  Store extension nodes together with the branch

  Extension nodes must be followed by a branch - as such, it makes sense
  to store the two together both in the database and in memory:

  * fewer reads, writes and updates to traverse the tree
  * simpler logic for maintaining the node structure
  * less space used, both memory and storage, because there are fewer
    nodes overall

  There is also a downside: hashes can no longer be cached for an
  extension - instead, only the extension+branch hash can be cached - this
  seems like a fine tradeoff since computing it should be fast.

  TODO: fix commented code

* Fix merge functions and `toNode()`

* Update `merkleSignCommit()` prototype

why:
  Result is always a 32bit hash

* Update short Merkle hash key generation

details:
  Ethereum reference MPTs use Keccak hashes as node links if the size of
  an RLP encoded node is at least 32 bytes. Otherwise, the RLP encoded
  node value is used as a pseudo node link (rather than a hash.) This is
  specified in the yellow paper, appendix D.

  Different to the `Aristo` implementation, the reference MPT would not
  store such a node on the key-value database. Rather the RLP encoded node value is stored instead of a node link in a parent node
  is stored as a node link on the parent database.

  Only for the root hash, the top level node is always referred to by the
  hash.

* Fix/update `Extension` sections

why:
  Were commented out after removal of a dedicated `Extension` type which
  left the system disfunctional.

* Clean up unused error codes

* Update unit tests

* Update docu

---------

Co-authored-by: Jacek Sieka <jacek@status.im>
2024-07-16 19:47:59 +00:00

165 lines
5.7 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
{.push raises: [].}
import eth/common, results, ".."/[aristo_desc, aristo_get, aristo_layers, aristo_vid]
# ------------------------------------------------------------------------------
# Private getters & setters
# ------------------------------------------------------------------------------
proc xPfx(vtx: VertexRef): NibblesBuf =
case vtx.vType
of Leaf: vtx.lPfx
of Branch: vtx.ePfx
# -----------
proc layersPutLeaf(
db: AristoDbRef, rvid: RootedVertexID, path: NibblesBuf, payload: LeafPayload
): VertexRef =
let vtx = VertexRef(vType: Leaf, lPfx: path, lData: payload)
db.layersPutVtx(rvid, vtx)
vtx
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
proc mergePayloadImpl*(
db: AristoDbRef, # Database, top layer
root: VertexID, # MPT state root
path: openArray[byte], # Leaf item to add to the database
payload: LeafPayload, # Payload value
): Result[VertexRef, AristoError] =
## Merge the argument `(root,path)` key-value-pair into the top level vertex
## table of the database `db`. The `path` argument is used to address the
## leaf vertex with the payload. It is stored or updated on the database
## accordingly.
##
var
path = NibblesBuf.fromBytes(path)
cur = root
touched: array[NibblesBuf.high + 1, VertexID]
pos = 0
vtx = db.getVtxRc((root, cur)).valueOr:
if error != GetVtxNotFound:
return err(error)
# We're at the root vertex and there is no data - this must be a fresh
# VertexID!
return ok db.layersPutLeaf((root, cur), path, payload)
template resetKeys() =
# Reset cached hashes of touched verticies
for i in 0 ..< pos:
db.layersResKey((root, touched[pos - i - 1]))
while path.len > 0:
# Clear existing merkle keys along the traversal path
touched[pos] = cur
pos += 1
let n = path.sharedPrefixLen(vtx.xPfx)
case vtx.vType
of Leaf:
let leafVtx =
if n == vtx.lPfx.len:
# Same path - replace the current vertex with a new payload
if vtx.lData == payload:
# TODO is this still needed? Higher levels should already be doing
# these checks
return err(MergeLeafPathCachedAlready)
if root == VertexID(1):
var payload = payload.dup()
# TODO can we avoid this hack? it feels like the caller should already
# have set an appropriate stoID - this "fixup" feels risky,
# specially from a caching point of view
payload.stoID = vtx.lData.stoID
db.layersPutLeaf((root, cur), path, payload)
else:
db.layersPutLeaf((root, cur), path, payload)
else:
# Turn leaf into a branch (or extension) then insert the two leaves
# into the branch
let branch = VertexRef(vType: Branch, ePfx: path.slice(0, n))
block: # Copy of existing leaf node, now one level deeper
let local = db.vidFetch()
branch.bVid[vtx.lPfx[n]] = local
discard db.layersPutLeaf((root, local), vtx.lPfx.slice(n + 1), vtx.lData)
let leafVtx = block: # Newly inserted leaf node
let local = db.vidFetch()
branch.bVid[path[n]] = local
db.layersPutLeaf((root, local), path.slice(n + 1), payload)
# Put the branch at the vid where the leaf was
db.layersPutVtx((root, cur), branch)
leafVtx
resetKeys()
return ok(leafVtx)
of Branch:
if vtx.ePfx.len == n:
# The existing branch is a prefix of the new entry
let
nibble = path[vtx.ePfx.len]
next = vtx.bVid[nibble]
if next.isValid:
cur = next
path = path.slice(n + 1)
vtx = ?db.getVtxRc((root, next))
else:
# There's no vertex at the branch point - insert the payload as a new
# leaf and update the existing branch
let
local = db.vidFetch()
leafVtx = db.layersPutLeaf((root, local), path.slice(n + 1), payload)
brDup = vtx.dup()
brDup.bVid[nibble] = local
db.layersPutVtx((root, cur), brDup)
resetKeys()
return ok(leafVtx)
else:
# Partial path match - we need to split the existing branch at
# the point of divergence, inserting a new branch
let branch = VertexRef(vType: Branch, ePfx: path.slice(0, n))
block: # Copy the existing vertex and add it to the new branch
let local = db.vidFetch()
branch.bVid[vtx.ePfx[n]] = local
db.layersPutVtx(
(root, local),
VertexRef(vType: Branch, ePfx: vtx.ePfx.slice(n + 1), bVid: vtx.bVid),
)
let leafVtx = block: # add the new entry
let local = db.vidFetch()
branch.bVid[path[n]] = local
db.layersPutLeaf((root, local), path.slice(n + 1), payload)
db.layersPutVtx((root, cur), branch)
resetKeys()
return ok(leafVtx)
err(MergeHikeFailed)
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------