nimbus-eth1/nimbus/db/aristo/aristo_layers.nim
Jacek Sieka 9d91191154
storage hike cache (#2484)
This PR adds a storage hike cache similar to the account hike cache
already present - this cache is less efficient because account storage
is already partically cached in the account ledger but nonetheless helps
keep hiking down.

Notably, there's an opportunity to optimise this cache and the others so
that they cooperate better insteado of overlapping, which is left for a
future PR.

This PR also fixes an O(N) memory usage for storage slots where the
delete would keep the full storage in a work list which on mainnet can
grow very large - the work list is replaced with a more conventional
recursive `O(log N)` approach.
2024-07-14 19:12:10 +02:00

267 lines
9.0 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
{.push raises: [].}
import
std/[sequtils, sets, tables],
eth/common,
results,
./aristo_desc
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
func dup(sTab: Table[RootedVertexID,VertexRef]): Table[RootedVertexID,VertexRef] =
## Explicit dup for `VertexRef` values
for (k,v) in sTab.pairs:
result[k] = v.dup
# ------------------------------------------------------------------------------
# Public getters: lazy value lookup for read only versions
# ------------------------------------------------------------------------------
func vTop*(db: AristoDbRef): VertexID =
db.top.delta.vTop
# ------------------------------------------------------------------------------
# Public getters/helpers
# ------------------------------------------------------------------------------
func nLayersVtx*(db: AristoDbRef): int =
## Number of vertex ID/vertex entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappings held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.delta.sTab.len).foldl(a + b, db.top.delta.sTab.len)
func nLayersKey*(db: AristoDbRef): int =
## Number of vertex ID/key entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappingss held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.delta.kMap.len).foldl(a + b, db.top.delta.kMap.len)
# ------------------------------------------------------------------------------
# Public functions: getter variants
# ------------------------------------------------------------------------------
func layersGetVtx*(db: AristoDbRef; rvid: RootedVertexID): Opt[VertexRef] =
## Find a vertex on the cache layers. An `ok()` result might contain a
## `nil` vertex if it is stored on the cache that way.
##
db.top.delta.sTab.withValue(rvid, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.sTab.withValue(rvid, item):
return Opt.some(item[])
Opt.none(VertexRef)
func layersGetVtxOrVoid*(db: AristoDbRef; rvid: RootedVertexID): VertexRef =
## Simplified version of `layersGetVtx()`
db.layersGetVtx(rvid).valueOr: VertexRef(nil)
func layersGetKey*(db: AristoDbRef; rvid: RootedVertexID): Opt[HashKey] =
## Find a hash key on the cache layers. An `ok()` result might contain a void
## hash key if it is stored on the cache that way.
##
db.top.delta.kMap.withValue(rvid, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.kMap.withValue(rvid, item):
return ok(item[])
Opt.none(HashKey)
func layersGetKeyOrVoid*(db: AristoDbRef; rvid: RootedVertexID): HashKey =
## Simplified version of `layersGetKey()`
db.layersGetKey(rvid).valueOr: VOID_HASH_KEY
func layersGetAccLeaf*(db: AristoDbRef; accPath: Hash256): Opt[VertexRef] =
db.top.delta.accLeaves.withValue(accPath, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.accLeaves.withValue(accPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
func layersGetStoLeaf*(db: AristoDbRef; mixPath: Hash256): Opt[VertexRef] =
db.top.delta.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
for w in db.rstack:
w.delta.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
# ------------------------------------------------------------------------------
# Public functions: setter variants
# ------------------------------------------------------------------------------
func layersPutVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
vtx: VertexRef;
) =
## Store a (potentally empty) vertex on the top layer
db.top.delta.sTab[rvid] = vtx
func layersResVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
) =
## Shortcut for `db.layersPutVtx(vid, VertexRef(nil))`. It is sort of the
## equivalent of a delete function.
db.layersPutVtx(rvid, VertexRef(nil))
func layersPutKey*(
db: AristoDbRef;
rvid: RootedVertexID;
key: HashKey;
) =
## Store a (potentally void) hash key on the top layer
db.top.delta.kMap[rvid] = key
func layersResKey*(db: AristoDbRef; rvid: RootedVertexID) =
## Shortcut for `db.layersPutKey(vid, VOID_HASH_KEY)`. It is sort of the
## equivalent of a delete function.
db.layersPutKey(rvid, VOID_HASH_KEY)
proc layersUpdateVtx*(
db: AristoDbRef; # Database, top layer
rvid: RootedVertexID;
vtx: VertexRef; # Vertex to add
) =
## Update a vertex at `rvid` and reset its associated key entry
db.layersPutVtx(rvid, vtx)
db.layersResKey(rvid)
func layersPutAccLeaf*(db: AristoDbRef; accPath: Hash256; leafVtx: VertexRef) =
db.top.delta.accLeaves[accPath] = leafVtx
func layersPutStoLeaf*(db: AristoDbRef; mixPath: Hash256; leafVtx: VertexRef) =
db.top.delta.stoLeaves[mixPath] = leafVtx
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func layersMergeOnto*(src: LayerRef; trg: var LayerObj) =
## Merges the argument `src` into the argument `trg` and returns `trg`. For
## the result layer, the `txUid` value set to `0`.
##
trg.txUid = 0
for (vid,vtx) in src.delta.sTab.pairs:
trg.delta.sTab[vid] = vtx
for (vid,key) in src.delta.kMap.pairs:
trg.delta.kMap[vid] = key
trg.delta.vTop = src.delta.vTop
for (accPath,leafVtx) in src.delta.accLeaves.pairs:
trg.delta.accLeaves[accPath] = leafVtx
for (mixPath,leafVtx) in src.delta.stoLeaves.pairs:
trg.delta.stoLeaves[mixPath] = leafVtx
func layersCc*(db: AristoDbRef; level = high(int)): LayerRef =
## Provide a collapsed copy of layers up to a particular transaction level.
## If the `level` argument is too large, the maximum transaction level is
## returned. For the result layer, the `txUid` value set to `0`.
##
let layers = if db.stack.len <= level: db.stack & @[db.top]
else: db.stack[0 .. level]
# Set up initial layer (bottom layer)
result = LayerRef(
delta: LayerDeltaRef(
sTab: layers[0].delta.sTab.dup, # explicit dup for ref values
kMap: layers[0].delta.kMap,
vTop: layers[^1].delta.vTop,
accLeaves: layers[0].delta.accLeaves,
stoLeaves: layers[0].delta.stoLeaves,
))
# Consecutively merge other layers on top
for n in 1 ..< layers.len:
for (vid,vtx) in layers[n].delta.sTab.pairs:
result.delta.sTab[vid] = vtx
for (vid,key) in layers[n].delta.kMap.pairs:
result.delta.kMap[vid] = key
for (accPath,vtx) in layers[n].delta.accLeaves.pairs:
result.delta.accLeaves[accPath] = vtx
for (mixPath,vtx) in layers[n].delta.stoLeaves.pairs:
result.delta.stoLeaves[mixPath] = vtx
# ------------------------------------------------------------------------------
# Public iterators
# ------------------------------------------------------------------------------
iterator layersWalkVtx*(
db: AristoDbRef;
seen: var HashSet[VertexID];
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Walk over all `(VertexID,VertexRef)` pairs on the cache layers. Note that
## entries are unsorted.
##
## The argument `seen` collects a set of all visited vertex IDs including
## the one with a zero vertex which are othewise skipped by the iterator.
## The `seen` argument must not be modified while the iterator is active.
##
for (rvid,vtx) in db.top.delta.sTab.pairs:
yield (rvid,vtx)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,vtx) in w.delta.sTab.pairs:
if rvid.vid notin seen:
yield (rvid,vtx)
seen.incl rvid.vid
iterator layersWalkVtx*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Variant of `layersWalkVtx()`.
var seen: HashSet[VertexID]
for (rvid,vtx) in db.layersWalkVtx seen:
yield (rvid,vtx)
iterator layersWalkKey*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, key: HashKey] =
## Walk over all `(VertexID,HashKey)` pairs on the cache layers. Note that
## entries are unsorted.
var seen: HashSet[VertexID]
for (rvid,key) in db.top.delta.kMap.pairs:
yield (rvid,key)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,key) in w.delta.kMap.pairs:
if rvid.vid notin seen:
yield (rvid,key)
seen.incl rvid.vid
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------