c962bafd5a
* Fix Portal Hive fails by correcting Portal history JSON RPC API - Field naming in discv5_nodeInfo - Call naming of portal_historyStore - Other: some proc to func adjustements |
||
---|---|---|
.. | ||
docker | ||
README.md | ||
utp_rpc_types.nim | ||
utp_test.nim | ||
utp_test_app.nim | ||
utp_test_client.nim | ||
utp_test_rpc_calls.nim |
README.md
uTP testing infrastructure
Testing infrastructure which enables to test uTP implementation over different network conditions on local machine.
Highly based on tools developed to test quic protocol:
Prerequisities
-
Machine with docker installed
-
nimbus-eth1 set-up to run
make utp_test
How it works
Test setup uses docker compose to start 3 docker containers:
- client - which is instance of uTP test app
- server - which is instance of uTP test app
- sim - which is instance with ns3 network simulator with several pre-compiled scenarios
The networking is setup in such way that network traffic is routed from client to server and server to client thorugh sim which decideds what to do with flowing packets
Explanation from quic-network-simulator:
The framework uses two networks on the host machine: `leftnet` (IPv4
193.167.0.0/24, IPv6 fd00:cafe:cafe:0::/64) and `rightnet` (IPv4
193.167.100.0/24, IPv6 fd00:cafe:cafe:100::/64). `leftnet` is connected to the
client docker image, and `rightnet` is connected to the server. The ns-3
simulation sits in the middle and forwards packets between `leftnet` and
`rightnet`
Practicalities
For now process is semi-manual (TODO automate this as much as possible)
To run integration testing scenarios with different network conditions
1. cd nimbus-eth1/
2. docker build -t test-utp --build-arg BRANCH_NAME={branch-name} fluffy/tools/utp_testing/docker
3. SCENARIO="scenario_details" docker-compose -f fluffy/tools/utp_testing/docker/docker-compose.yml up
For example:
SCENARIO="drop-rate --delay=15ms --bandwidth=10Mbps --queue=25 --rate_to_client=0 --rate_to_server=0" docker-compose -f fluffy/tools/utp_testing/docker/docker-compose.yml up
would start `drop-rate` scenario with specified delay, bandwith, and different drop rates
4. make utp-test
All scenarios are specified in: scenarios