nimbus-eth1/nimbus/db/aristo/aristo_nearby.nim
Jacek Sieka 81e75622cf
storage: store root id together with vid, for better locality of refe… (#2449)
The state and account MPT:s currenty share key space in the database
based on that vertex id:s are assigned essentially randomly, which means
that when two adjacent slot values from the same contract are accessed,
they might reside at large distance from each other.

Here, we prefix each vertex id by its root causing them to be sorted
together thus bringing all data belonging to a particular contract
closer together - the same effect also happens for the main state MPT
whose nodes now end up clustered together more tightly.

In the future, the prefix given to the storage keys can also be used to
perform range operations such as reading all the storage at once and/or
deleting an account with a batch operation.

Notably, parts of the API already supported this rooting concept while
parts didn't - this PR makes the API consistent by always working with a
root+vid.
2024-07-04 15:46:52 +02:00

601 lines
20 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie traversal
## ====================================
##
## This module provides tools to visit leaf vertices in a monotone order,
## increasing or decreasing. These tools are intended for
## * boundary proof verification
## * step along leaf vertices in sorted order
## * tree/trie consistency checks when debugging
##
{.push raises: [].}
import
std/[tables, typetraits],
eth/common,
results,
"."/[aristo_desc, aristo_fetch, aristo_get, aristo_hike, aristo_path]
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
proc `<=`(a, b: NibblesBuf): bool =
## Compare nibbles, different lengths are padded to the right with zeros
let abMin = min(a.len, b.len)
for n in 0 ..< abMin:
if a[n] < b[n]:
return true
if b[n] < a[n]:
return false
# otherwise a[n] == b[n]
# Assuming zero for missing entries
if b.len < a.len:
for n in abMin + 1 ..< a.len:
if 0 < a[n]:
return false
true
proc `<`(a, b: NibblesBuf): bool =
not (b <= a)
# ------------------
proc branchNibbleMin*(vtx: VertexRef; minInx: int8): int8 =
## Find the least index for an argument branch `vtx` link with index
## greater or equal the argument `nibble`.
if vtx.vType == Branch:
for n in minInx .. 15:
if vtx.bVid[n].isValid:
return n
-1
proc branchNibbleMax*(vtx: VertexRef; maxInx: int8): int8 =
## Find the greatest index for an argument branch `vtx` link with index
## less or equal the argument `nibble`.
if vtx.vType == Branch:
for n in maxInx.countDown 0:
if vtx.bVid[n].isValid:
return n
-1
# ------------------
proc toLeafTiePayload(hike: Hike): (LeafTie,PayloadRef) =
## Shortcut for iterators. This function will gloriously crash unless the
## `hike` argument is complete.
(LeafTie(root: hike.root, path: hike.to(NibblesBuf).pathToTag.value),
hike.legs[^1].wp.vtx.lData)
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
proc complete(
hike: Hike; # Partially expanded chain of vertices
vid: VertexID; # Start ID
db: AristoDbRef; # Database layer
hikeLenMax: static[int]; # Beware of loops (if any)
doLeast: static[bool]; # Direction: *least* or *most*
): Result[Hike,(VertexID,AristoError)] =
## Extend `hike` using least or last vertex without recursion.
if not vid.isValid:
return err((VertexID(0),NearbyVidInvalid))
var
vid = vid
vtx = db.getVtx (hike.root, vid)
uHike = Hike(root: hike.root, legs: hike.legs)
if not vtx.isValid:
return err((vid,GetVtxNotFound))
while uHike.legs.len < hikeLenMax:
var leg = Leg(wp: VidVtxPair(vid: vid, vtx: vtx), nibble: -1)
case vtx.vType:
of Leaf:
uHike.legs.add leg
return ok(uHike) # done
of Extension:
vid = vtx.eVid
if vid.isValid:
vtx = db.getVtx (hike.root, vid)
if vtx.isValid:
uHike.legs.add leg
continue
return err((vid,NearbyExtensionError)) # Oops, no way
of Branch:
when doLeast:
leg.nibble = vtx.branchNibbleMin 0
else:
leg.nibble = vtx.branchNibbleMax 15
if 0 <= leg.nibble:
vid = vtx.bVid[leg.nibble]
vtx = db.getVtx (hike.root, vid)
if vtx.isValid:
uHike.legs.add leg
continue
return err((leg.wp.vid,NearbyBranchError)) # Oops, no way
err((VertexID(0),NearbyNestingTooDeep))
proc zeroAdjust(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
doLeast: static[bool]; # Direction: *least* or *most*
): Result[Hike,(VertexID,AristoError)] =
## Adjust empty argument path to the first vertex entry to the right. Ths
## applies is the argument `hike` is before the first entry in the database.
## The result is a hike which is aligned with the first entry.
proc accept(p: Hike; pfx: NibblesBuf): bool =
when doLeast:
p.tail <= pfx
else:
pfx <= p.tail
proc branchBorderNibble(w: VertexRef; n: int8): int8 =
when doLeast:
w.branchNibbleMin n
else:
w.branchNibbleMax n
proc toHike(pfx: NibblesBuf, root: VertexID, db: AristoDbRef): Hike =
when doLeast:
pfx.pathPfxPad(0).hikeUp(root, db).to(Hike)
else:
pfx.pathPfxPad(255).hikeUp(root, db).to(Hike)
if 0 < hike.legs.len:
return ok(hike)
let root = db.getVtx (hike.root, hike.root)
if root.isValid:
block fail:
var pfx: NibblesBuf
case root.vType:
of Branch:
# Find first non-dangling link and assign it
let nibbleID = block:
when doLeast:
if hike.tail.len == 0: 0i8
else: hike.tail[0].int8
else:
if hike.tail.len == 0:
break fail
hike.tail[0].int8
let n = root.branchBorderNibble nibbleID
if n < 0:
# Before or after the database range
return err((hike.root,NearbyBeyondRange))
pfx = NibblesBuf.nibble(n.byte)
of Extension:
let ePfx = root.ePfx
# Must be followed by a branch vertex
if not hike.accept ePfx:
break fail
let vtx = db.getVtx (hike.root, root.eVid)
if not vtx.isValid:
break fail
pfx = ePfx
of Leaf:
pfx = root.lPfx
if not hike.accept pfx:
# Before or after the database range
return err((hike.root,NearbyBeyondRange))
var newHike = pfx.toHike(hike.root, db)
if 0 < newHike.legs.len:
return ok(newHike)
err((VertexID(0),NearbyEmptyHike))
proc finalise(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
moveRight: static[bool]; # Direction of next vertex
): Result[Hike,(VertexID,AristoError)] =
## Handle some pathological cases after main processing failed
proc beyond(p: Hike; pfx: NibblesBuf): bool =
when moveRight:
pfx < p.tail
else:
p.tail < pfx
proc branchBorderNibble(w: VertexRef): int8 =
when moveRight:
w.branchNibbleMax 15
else:
w.branchNibbleMin 0
# Just for completeness (this case should have been handled, already)
if hike.legs.len == 0:
return err((VertexID(0),NearbyEmptyHike))
# Check whether the path is beyond the database range
if 0 < hike.tail.len: # nothing to compare against, otherwise
let top = hike.legs[^1]
# Note that only a `Branch` vertices has a non-zero nibble
if 0 <= top.nibble and top.nibble == top.wp.vtx.branchBorderNibble:
# Check the following up vertex
let
vid = top.wp.vtx.bVid[top.nibble]
vtx = db.getVtx (hike.root, vid)
if not vtx.isValid:
return err((vid,NearbyDanglingLink))
var pfx: NibblesBuf
case vtx.vType:
of Leaf:
pfx = vtx.lPfx
of Extension:
pfx = vtx.ePfx
of Branch:
pfx = NibblesBuf.nibble(vtx.branchBorderNibble.byte)
if hike.beyond pfx:
return err((vid,NearbyBeyondRange))
# Pathological cases
# * finalise right: nfffff.. for n < f or
# * finalise left: n00000.. for 0 < n
if hike.legs[0].wp.vtx.vType == Branch or
(1 < hike.legs.len and hike.legs[1].wp.vtx.vType == Branch):
return err((VertexID(0),NearbyFailed)) # no more vertices
err((hike.legs[^1].wp.vid,NearbyUnexpectedVtx)) # error
proc nearbyNext(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
hikeLenMax: static[int]; # Beware of loops (if any)
moveRight: static[bool]; # Direction of next vertex
): Result[Hike,(VertexID,AristoError)] =
## Unified implementation of `nearbyRight()` and `nearbyLeft()`.
proc accept(nibble: int8): bool =
## Accept `nibble` unless on boundaty dependent on `moveRight`
when moveRight:
nibble < 15
else:
0 < nibble
proc accept(p: Hike; pfx: NibblesBuf): bool =
when moveRight:
p.tail <= pfx
else:
pfx <= p.tail
proc branchNibbleNext(w: VertexRef; n: int8): int8 =
when moveRight:
w.branchNibbleMin(n + 1)
else:
w.branchNibbleMax(n - 1)
# Some easy cases
let hike = ? hike.zeroAdjust(db, doLeast=moveRight)
if hike.legs[^1].wp.vtx.vType == Extension:
let vid = hike.legs[^1].wp.vtx.eVid
return hike.complete(vid, db, hikeLenMax, doLeast=moveRight)
var
uHike = hike
start = true
while 0 < uHike.legs.len:
let top = uHike.legs[^1]
case top.wp.vtx.vType:
of Leaf:
return ok(uHike)
of Branch:
if top.nibble < 0 or uHike.tail.len == 0:
return err((top.wp.vid,NearbyUnexpectedVtx))
of Extension:
uHike.tail = top.wp.vtx.ePfx & uHike.tail
uHike.legs.setLen(uHike.legs.len - 1)
continue
var
step = top
let
uHikeLen = uHike.legs.len # in case of backtracking
uHikeTail = uHike.tail # in case of backtracking
# Look ahead checking next vertex
if start:
let vid = top.wp.vtx.bVid[top.nibble]
if not vid.isValid:
return err((top.wp.vid,NearbyDanglingLink)) # error
let vtx = db.getVtx (hike.root, vid)
if not vtx.isValid:
return err((vid,GetVtxNotFound)) # error
case vtx.vType
of Leaf:
if uHike.accept vtx.lPfx:
return uHike.complete(vid, db, hikeLenMax, doLeast=moveRight)
of Extension:
if uHike.accept vtx.ePfx:
return uHike.complete(vid, db, hikeLenMax, doLeast=moveRight)
of Branch:
let nibble = uHike.tail[0].int8
if start and accept nibble:
# Step down and complete with a branch link on the child vertex
step = Leg(wp: VidVtxPair(vid: vid, vtx: vtx), nibble: nibble)
uHike.legs.add step
# Find the next item to the right/left of the current top entry
let n = step.wp.vtx.branchNibbleNext step.nibble
if 0 <= n:
uHike.legs[^1].nibble = n
return uHike.complete(
step.wp.vtx.bVid[n], db, hikeLenMax, doLeast=moveRight)
if start:
# Retry without look ahead
start = false
# Restore `uPath` (pop temporary extra step)
if uHikeLen < uHike.legs.len:
uHike.legs.setLen(uHikeLen)
uHike.tail = uHikeTail
else:
# Pop current `Branch` vertex on top and append nibble to `tail`
uHike.tail = NibblesBuf.nibble(top.nibble.byte) & uHike.tail
uHike.legs.setLen(uHike.legs.len - 1)
# End while
# Handle some pathological cases
hike.finalise(db, moveRight)
proc nearbyNextLeafTie(
lty: LeafTie; # Some `Patricia Trie` path
db: AristoDbRef; # Database layer
hikeLenMax: static[int]; # Beware of loops (if any)
moveRight:static[bool]; # Direction of next vertex
): Result[PathID,(VertexID,AristoError)] =
## Variant of `nearbyNext()`, convenience wrapper
let hike = ? lty.hikeUp(db).to(Hike).nearbyNext(db, hikeLenMax, moveRight)
if 0 < hike.legs.len:
if hike.legs[^1].wp.vtx.vType != Leaf:
return err((hike.legs[^1].wp.vid,NearbyLeafExpected))
let rc = hike.legsTo(NibblesBuf).pathToTag
if rc.isOk:
return ok rc.value
return err((VertexID(0),rc.error))
err((VertexID(0),NearbyLeafExpected))
# ------------------------------------------------------------------------------
# Public functions, moving and right boundary proof
# ------------------------------------------------------------------------------
proc right*(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
): Result[Hike,(VertexID,AristoError)] =
## Extends the maximally extended argument vertices `hike` to the right (i.e.
## with non-decreasing path value). This function does not backtrack if
## there are dangling links in between. It will return an error in that case.
##
## If there is no more leaf vertices to the right of the argument `hike`, the
## particular error code `NearbyBeyondRange` is returned.
##
## This code is intended to be used for verifying a left-bound proof to
## verify that there is no leaf vertex *right* of a boundary path value.
hike.nearbyNext(db, 64, moveRight=true)
proc right*(
lty: LeafTie; # Some `Patricia Trie` path
db: AristoDbRef; # Database layer
): Result[LeafTie,(VertexID,AristoError)] =
## Variant of `nearbyRight()` working with a `LeafTie` argument instead
## of a `Hike`.
ok LeafTie(
root: lty.root,
path: ? lty.nearbyNextLeafTie(db, 64, moveRight=true))
iterator rightPairs*(
db: AristoDbRef; # Database layer
start = low(LeafTie); # Before or at first value
): (LeafTie,PayloadRef) =
## Traverse the sub-trie implied by the argument `start` with increasing
## order.
var
hike = start.hikeUp(db).to(Hike)
rc = hike.right db
while rc.isOK:
hike = rc.value
let (key, pyl) = hike.toLeafTiePayload
yield (key, pyl)
if high(PathID) <= key.path:
break
# Increment `key` by one and update `hike`. In many cases, the current
# `hike` can be modified and re-used which saves some database lookups.
block reuseHike:
let tail = hike.legs[^1].wp.vtx.lPfx
if 0 < tail.len:
let topNibble = tail[tail.len - 1]
if topNibble < 15:
let newNibble = NibblesBuf.nibble(topNibble+1)
hike.tail = tail.slice(0, tail.len - 1) & newNibble
hike.legs.setLen(hike.legs.len - 1)
break reuseHike
if 1 < tail.len:
let nxtNibble = tail[tail.len - 2]
if nxtNibble < 15:
let dblNibble = NibblesBuf.fromBytes([((nxtNibble+1) shl 4) + 0])
hike.tail = tail.slice(0, tail.len - 2) & dblNibble
hike.legs.setLen(hike.legs.len - 1)
break reuseHike
# Fall back to default method
hike = key.next.hikeUp(db).to(Hike)
rc = hike.right db
# End while
iterator rightPairsAccount*(
db: AristoDbRef; # Database layer
start = low(PathID); # Before or at first value
): (PathID,AristoAccount) =
## Variant of `rightPairs()` for accounts tree
for (lty,pyl) in db.rightPairs LeafTie(root: VertexID(1), path: start):
yield (lty.path, pyl.account)
iterator rightPairsGeneric*(
db: AristoDbRef; # Database layer
root: VertexID; # Generic root (different from VertexID)
start = low(PathID); # Before or at first value
): (PathID,Blob) =
## Variant of `rightPairs()` for a generic tree
# Verify that `root` is neither from an accounts tree nor a strorage tree.
if VertexID(1) < root and root.distinctBase < LEAST_FREE_VID:
for (lty,pyl) in db.rightPairs LeafTie(root: VertexID(1), path: start):
yield (lty.path, pyl.rawBlob)
iterator rightPairsStorage*(
db: AristoDbRef; # Database layer
accPath: Hash256; # Account the storage data belong to
start = low(PathID); # Before or at first value
): (PathID,Blob) =
## Variant of `rightPairs()` for a storage tree
block body:
let stoID = db.fetchStorageID(accPath).valueOr:
break body
if stoID.isValid:
for (lty,pyl) in db.rightPairs LeafTie(root: stoID, path: start):
yield (lty.path, pyl.rawBlob)
# ----------------
proc left*(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
): Result[Hike,(VertexID,AristoError)] =
## Similar to `nearbyRight()`.
##
## This code is intended to be used for verifying a right-bound proof to
## verify that there is no leaf vertex *left* to a boundary path value.
hike.nearbyNext(db, 64, moveRight=false)
proc left*(
lty: LeafTie; # Some `Patricia Trie` path
db: AristoDbRef; # Database layer
): Result[LeafTie,(VertexID,AristoError)] =
## Similar to `nearbyRight()` for `LeafTie` argument instead of a `Hike`.
ok LeafTie(
root: lty.root,
path: ? lty.nearbyNextLeafTie(db, 64, moveRight=false))
iterator leftPairs*(
db: AristoDbRef; # Database layer
start = high(LeafTie); # Before or at first value
): (LeafTie,PayloadRef) =
## Traverse the sub-trie implied by the argument `start` with decreasing
## order. It will stop at any error. In order to reproduce an error, one
## can run the function `left()` on the last returned `LiefTie` item with
## the `path` field decremented by `1`.
var
hike = start.hikeUp(db).to(Hike)
rc = hike.left db
while rc.isOK:
hike = rc.value
let (key, pyl) = hike.toLeafTiePayload
yield (key, pyl)
if key.path <= low(PathID):
break
# Decrement `key` by one and update `hike`. In many cases, the current
# `hike` can be modified and re-used which saves some database lookups.
block reuseHike:
let tail = hike.legs[^1].wp.vtx.lPfx
if 0 < tail.len:
let topNibble = tail[tail.len - 1]
if 0 < topNibble:
let newNibble = NibblesBuf.nibble(topNibble - 1)
hike.tail = tail.slice(0, tail.len - 1) & newNibble
hike.legs.setLen(hike.legs.len - 1)
break reuseHike
if 1 < tail.len:
let nxtNibble = tail[tail.len - 2]
if 0 < nxtNibble:
let dblNibble = NibblesBuf.fromBytes([((nxtNibble-1) shl 4) + 15])
hike.tail = tail.slice(0, tail.len - 2) & dblNibble
hike.legs.setLen(hike.legs.len - 1)
break reuseHike
# Fall back to default method
hike = key.prev.hikeUp(db).to(Hike)
rc = hike.left db
# End while
# ------------------------------------------------------------------------------
# Public debugging helpers
# ------------------------------------------------------------------------------
proc rightMissing*(
hike: Hike; # Partially expanded chain of vertices
db: AristoDbRef; # Database layer
): Result[bool,AristoError] =
## Returns `true` if the maximally extended argument vertex `hike` is the
## right most on the hexary trie database. It verifies that there is no more
## leaf entry to the right of the argument `hike`. This function is an
## alternative to
## ::
## let rc = path.nearbyRight(db)
## if rc.isOk:
## # not at the end => false
## ...
## elif rc.error != NearbyBeyondRange:
## # problem with database => error
## ...
## else:
## # no nore vertices => true
## ...
## and is intended mainly for debugging.
if hike.legs.len == 0:
return err(NearbyEmptyHike)
if 0 < hike.tail.len:
return err(NearbyPathTailUnexpected)
let top = hike.legs[^1]
if top.wp.vtx.vType != Branch or top.nibble < 0:
return err(NearbyBranchError)
let vid = top.wp.vtx.bVid[top.nibble]
if not vid.isValid:
return err(NearbyDanglingLink) # error
let vtx = db.getVtx (hike.root, vid)
if not vtx.isValid:
return err(GetVtxNotFound) # error
case vtx.vType
of Leaf:
return ok(vtx.lPfx < hike.tail)
of Extension:
return ok(vtx.ePfx < hike.tail)
of Branch:
return ok(vtx.branchNibbleMin(hike.tail[0].int8) < 0)
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------