nimbus-eth1/nimbus/db/aristo/aristo_layers.nim
Jacek Sieka a056a722eb
Sort subkey lookups by VertexID when computing keys (#2918)
Since data is ordered by VertexID on disk, with this simple trick we can
make much better use of the various rocksdb caches.

Computing the state root of the full mainnet state is down to 4 hours
(from 9) on my laptop.
2024-12-09 08:16:02 +01:00

273 lines
9.1 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
{.push raises: [].}
import
std/[enumerate, sequtils, sets, tables],
eth/common,
results,
./aristo_desc
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
func dup(sTab: Table[RootedVertexID,VertexRef]): Table[RootedVertexID,VertexRef] =
## Explicit dup for `VertexRef` values
for (k,v) in sTab.pairs:
result[k] = v.dup
# ------------------------------------------------------------------------------
# Public getters: lazy value lookup for read only versions
# ------------------------------------------------------------------------------
func vTop*(db: AristoDbRef): VertexID =
db.top.vTop
# ------------------------------------------------------------------------------
# Public getters/helpers
# ------------------------------------------------------------------------------
func nLayersVtx*(db: AristoDbRef): int =
## Number of vertex ID/vertex entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappings held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.sTab.len).foldl(a + b, db.top.sTab.len)
func nLayersKey*(db: AristoDbRef): int =
## Number of vertex ID/key entries on the cache layers. This is an upper
## bound for the number of effective vertex ID mappingss held on the cache
## layers as there might be duplicate entries for the same vertex ID on
## different layers.
##
db.stack.mapIt(it.kMap.len).foldl(a + b, db.top.kMap.len)
# ------------------------------------------------------------------------------
# Public functions: getter variants
# ------------------------------------------------------------------------------
func layersGetVtx*(db: AristoDbRef; rvid: RootedVertexID): Opt[(VertexRef, int)] =
## Find a vertex on the cache layers. An `ok()` result might contain a
## `nil` vertex if it is stored on the cache that way.
##
db.top.sTab.withValue(rvid, item):
return Opt.some((item[], 0))
for i, w in enumerate(db.rstack):
w.sTab.withValue(rvid, item):
return Opt.some((item[], i + 1))
Opt.none((VertexRef, int))
func layersGetKey*(db: AristoDbRef; rvid: RootedVertexID): Opt[(HashKey, int)] =
## Find a hash key on the cache layers. An `ok()` result might contain a void
## hash key if it is stored on the cache that way.
##
db.top.kMap.withValue(rvid, item):
return Opt.some((item[], 0))
if rvid in db.top.sTab:
return Opt.some((VOID_HASH_KEY, 0))
for i, w in enumerate(db.rstack):
w.kMap.withValue(rvid, item):
return ok((item[], i + 1))
if rvid in w.sTab:
return Opt.some((VOID_HASH_KEY, i + 1))
Opt.none((HashKey, int))
func layersGetKeyOrVoid*(db: AristoDbRef; rvid: RootedVertexID): HashKey =
## Simplified version of `layersGetKey()`
(db.layersGetKey(rvid).valueOr (VOID_HASH_KEY, 0))[0]
func layersGetAccLeaf*(db: AristoDbRef; accPath: Hash32): Opt[VertexRef] =
db.top.accLeaves.withValue(accPath, item):
return Opt.some(item[])
for w in db.rstack:
w.accLeaves.withValue(accPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
func layersGetStoLeaf*(db: AristoDbRef; mixPath: Hash32): Opt[VertexRef] =
db.top.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
for w in db.rstack:
w.stoLeaves.withValue(mixPath, item):
return Opt.some(item[])
Opt.none(VertexRef)
# ------------------------------------------------------------------------------
# Public functions: setter variants
# ------------------------------------------------------------------------------
func layersPutVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
vtx: VertexRef;
) =
## Store a (potentally empty) vertex on the top layer
db.top.sTab[rvid] = vtx
db.top.kMap.del(rvid)
func layersResVtx*(
db: AristoDbRef;
rvid: RootedVertexID;
) =
## Shortcut for `db.layersPutVtx(vid, VertexRef(nil))`. It is sort of the
## equivalent of a delete function.
db.layersPutVtx(rvid, VertexRef(nil))
func layersPutKey*(
db: AristoDbRef;
rvid: RootedVertexID;
vtx: VertexRef,
key: HashKey;
) =
## Store a (potentally void) hash key on the top layer
db.top.sTab[rvid] = vtx
db.top.kMap[rvid] = key
func layersResKey*(db: AristoDbRef; rvid: RootedVertexID, vtx: VertexRef) =
## Shortcut for `db.layersPutKey(vid, VOID_HASH_KEY)`. It is sort of the
## equivalent of a delete function.
db.layersPutVtx(rvid, vtx)
func layersResKeys*(db: AristoDbRef; hike: Hike) =
## Reset all cached keys along the given hike
for i in 1..hike.legs.len:
db.layersResKey((hike.root, hike.legs[^i].wp.vid), hike.legs[^i].wp.vtx)
func layersPutAccLeaf*(db: AristoDbRef; accPath: Hash32; leafVtx: VertexRef) =
db.top.accLeaves[accPath] = leafVtx
func layersPutStoLeaf*(db: AristoDbRef; mixPath: Hash32; leafVtx: VertexRef) =
db.top.stoLeaves[mixPath] = leafVtx
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func isEmpty*(ly: LayerRef): bool =
## Returns `true` if the layer does not contain any changes, i.e. all the
## tables are empty. The field `txUid` is ignored, here.
ly.sTab.len == 0 and
ly.kMap.len == 0 and
ly.accLeaves.len == 0 and
ly.stoLeaves.len == 0
func layersMergeOnto*(src: LayerRef; trg: var LayerObj) =
## Merges the argument `src` into the argument `trg` and returns `trg`. For
## the result layer, the `txUid` value set to `0`.
##
trg.txUid = 0
for (vid,vtx) in src.sTab.pairs:
trg.sTab[vid] = vtx
trg.kMap.del vid
for (vid,key) in src.kMap.pairs:
trg.kMap[vid] = key
trg.vTop = src.vTop
for (accPath,leafVtx) in src.accLeaves.pairs:
trg.accLeaves[accPath] = leafVtx
for (mixPath,leafVtx) in src.stoLeaves.pairs:
trg.stoLeaves[mixPath] = leafVtx
func layersCc*(db: AristoDbRef; level = high(int)): LayerRef =
## Provide a collapsed copy of layers up to a particular transaction level.
## If the `level` argument is too large, the maximum transaction level is
## returned. For the result layer, the `txUid` value set to `0`.
##
let layers = if db.stack.len <= level: db.stack & @[db.top]
else: db.stack[0 .. level]
# Set up initial layer (bottom layer)
result = LayerRef(
sTab: layers[0].sTab.dup, # explicit dup for ref values
kMap: layers[0].kMap,
vTop: layers[^1].vTop,
accLeaves: layers[0].accLeaves,
stoLeaves: layers[0].stoLeaves)
# Consecutively merge other layers on top
for n in 1 ..< layers.len:
for (vid,vtx) in layers[n].sTab.pairs:
result.sTab[vid] = vtx
result.kMap.del vid
for (vid,key) in layers[n].kMap.pairs:
result.kMap[vid] = key
for (accPath,vtx) in layers[n].accLeaves.pairs:
result.accLeaves[accPath] = vtx
for (mixPath,vtx) in layers[n].stoLeaves.pairs:
result.stoLeaves[mixPath] = vtx
# ------------------------------------------------------------------------------
# Public iterators
# ------------------------------------------------------------------------------
iterator layersWalkVtx*(
db: AristoDbRef;
seen: var HashSet[VertexID];
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Walk over all `(VertexID,VertexRef)` pairs on the cache layers. Note that
## entries are unsorted.
##
## The argument `seen` collects a set of all visited vertex IDs including
## the one with a zero vertex which are othewise skipped by the iterator.
## The `seen` argument must not be modified while the iterator is active.
##
for (rvid,vtx) in db.top.sTab.pairs:
yield (rvid,vtx)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,vtx) in w.sTab.pairs:
if rvid.vid notin seen:
yield (rvid,vtx)
seen.incl rvid.vid
iterator layersWalkVtx*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, vtx: VertexRef] =
## Variant of `layersWalkVtx()`.
var seen: HashSet[VertexID]
for (rvid,vtx) in db.layersWalkVtx seen:
yield (rvid,vtx)
iterator layersWalkKey*(
db: AristoDbRef;
): tuple[rvid: RootedVertexID, key: HashKey] =
## Walk over all `(VertexID,HashKey)` pairs on the cache layers. Note that
## entries are unsorted.
var seen: HashSet[VertexID]
for (rvid,key) in db.top.kMap.pairs:
yield (rvid,key)
seen.incl rvid.vid
for w in db.rstack:
for (rvid,key) in w.kMap.pairs:
if rvid.vid notin seen:
yield (rvid,key)
seen.incl rvid.vid
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------