nimbus-eth1/nimbus/db/aristo/aristo_hike.nim

205 lines
6.0 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
{.push raises: [].}
import
eth/common,
results,
stew/arraybuf,
"."/[aristo_desc, aristo_get]
const
HikeAcceptableStopsNotFound* = {
HikeBranchTailEmpty,
HikeBranchMissingEdge,
HikeLeafUnexpected,
HikeNoLegs}
## When trying to find a leaf vertex the Patricia tree, there are several
## conditions where the search stops which do not constitute a problem
## with the trie (aka sysetm error.)
# ------------------------------------------------------------------------------
# Private functions
# ------------------------------------------------------------------------------
func getNibblesImpl(hike: Hike; start = 0; maxLen = high(int)): NibblesBuf =
## May be needed for partial rebuild, as well
for n in start ..< min(hike.legs.len, maxLen):
let leg = hike.legs[n]
case leg.wp.vtx.vType:
of Branch:
result = result & leg.wp.vtx.pfx & NibblesBuf.nibble(leg.nibble.byte)
of Leaf:
result = result & leg.wp.vtx.pfx
# ------------------------------------------------------------------------------
# Public functions
# ------------------------------------------------------------------------------
func to*(rc: Result[Hike,(VertexID,AristoError,Hike)]; T: type Hike): T =
## Extract `Hike` from either ok ot error part of argument `rc`.
if rc.isOk: rc.value else: rc.error[2]
func to*(hike: Hike; T: type NibblesBuf): T =
## Convert back
hike.getNibblesImpl() & hike.tail
func legsTo*(hike: Hike; T: type NibblesBuf): T =
## Convert back
hike.getNibblesImpl()
func legsTo*(hike: Hike; numLegs: int; T: type NibblesBuf): T =
## variant of `legsTo()`
hike.getNibblesImpl(0, numLegs)
# --------
proc step*(
path: NibblesBuf, rvid: RootedVertexID, db: AristoDbRef
): Result[(VertexRef, NibblesBuf, VertexID), AristoError] =
# Fetch next vertex
let (vtx, _) = db.getVtxRc(rvid).valueOr:
if error != GetVtxNotFound:
return err(error)
if rvid.root == rvid.vid:
return err(HikeNoLegs)
# The vertex ID `vid` was a follow up from a parent vertex, but there is
# no child vertex on the database. So `vid` is a dangling link which is
# allowed only if there is a partial trie (e.g. with `snap` sync.)
return err(HikeDanglingEdge)
case vtx.vType:
of Leaf:
# This must be the last vertex, so there cannot be any `tail` left.
if path.len != path.sharedPrefixLen(vtx.pfx):
return err(HikeLeafUnexpected)
ok (vtx, NibblesBuf(), VertexID(0))
of Branch:
# There must be some more data (aka `tail`) after a `Branch` vertex.
if path.len <= vtx.pfx.len:
return err(HikeBranchTailEmpty)
let
nibble = path[vtx.pfx.len]
nextVid = vtx.bVid(nibble)
if not nextVid.isValid:
return err(HikeBranchMissingEdge)
ok (vtx, path.slice(vtx.pfx.len + 1), nextVid)
iterator stepUp*(
path: NibblesBuf; # Partial path
root: VertexID; # Start vertex
db: AristoDbRef; # Database
): Result[VertexRef, AristoError] =
## For the argument `path`, iterate over the logest possible path in the
## argument database `db`.
var
path = path
next = root
vtx: VertexRef
block iter:
while true:
(vtx, path, next) = step(path, (root, next), db).valueOr:
yield Result[VertexRef, AristoError].err(error)
break iter
yield Result[VertexRef, AristoError].ok(vtx)
if path.len == 0:
break
proc hikeUp*(
path: NibblesBuf; # Partial path
root: VertexID; # Start vertex
db: AristoDbRef; # Database
leaf: Opt[VertexRef];
hike: var Hike;
): Result[void,(VertexID,AristoError)] =
## For the argument `path`, find and return the logest possible path in the
## argument database `db` - this may result in a partial match in which case
## hike.tail will be non-empty.
##
## If a leaf is given, it gets used for the "last" leg of the hike.
hike.root = root
hike.tail = path
hike.legs.setLen(0)
if not root.isValid:
return err((VertexID(0),HikeRootMissing))
if path.len == 0:
return err((VertexID(0),HikeEmptyPath))
var vid = root
while true:
if leaf.isSome() and leaf[].isValid and path == leaf[].pfx:
hike.legs.add Leg(wp: VidVtxPair(vid: vid, vtx: leaf[]), nibble: -1)
reset(hike.tail)
break
let (vtx, path, next) = step(hike.tail, (root, vid), db).valueOr:
return err((vid,error))
let wp = VidVtxPair(vid:vid, vtx:vtx)
case vtx.vType
of Leaf:
hike.legs.add Leg(wp: wp, nibble: -1)
hike.tail = path
break
of Branch:
hike.legs.add Leg(wp: wp, nibble: int8 hike.tail[vtx.pfx.len])
hike.tail = path
vid = next
ok()
proc hikeUp*(
lty: LeafTie;
db: AristoDbRef;
leaf: Opt[VertexRef];
hike: var Hike
): Result[void,(VertexID,AristoError)] =
## Variant of `hike()`
lty.path.to(NibblesBuf).hikeUp(lty.root, db, leaf, hike)
proc hikeUp*(
path: openArray[byte];
root: VertexID;
db: AristoDbRef;
leaf: Opt[VertexRef];
hike: var Hike
): Result[void,(VertexID,AristoError)] =
## Variant of `hike()`
NibblesBuf.fromBytes(path).hikeUp(root, db, leaf, hike)
proc hikeUp*(
path: Hash32;
root: VertexID;
db: AristoDbRef;
leaf: Opt[VertexRef];
hike: var Hike
): Result[void,(VertexID,AristoError)] =
## Variant of `hike()`
NibblesBuf.fromBytes(path.data).hikeUp(root, db, leaf, hike)
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------