nimbus-eth1/nimbus/db/aristo/aristo_desc/desc_structural.nim
Jacek Sieka 58cde36656
Remove RawData from possible leaf payload types (#2794)
This kind of data is not used except in tests where it is used only to
create databases that don't match actual usage of aristo.

Removing simplifies future optimizations that can focus on processing
specific leaf types more efficiently.

A casualty of this removal is some test code as well as some proof
generation code that is unused - on the surface, it looks like it should
be possible to port both of these to the more specific data types -
doing so would ensure that a database written by one part of the
codebase can interact with the other - as it stands, there is confusion
on this point since using the proof generation code will result in a
database of a shape that is incompatible with the rest of eth1.
2024-11-02 10:29:16 +01:00

258 lines
8.3 KiB
Nim

# nimbus-eth1
# Copyright (c) 2023-2024 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie structural data types
## ================================================
##
{.push raises: [].}
import
std/[hashes, tables],
stint,
eth/common,
./desc_identifiers
export stint
type
LeafTiePayload* = object
## Generalised key-value pair for a sub-trie. The main trie is the
## sub-trie with `root=VertexID(1)`.
leafTie*: LeafTie ## Full `Patricia Trie` path root-to-leaf
payload*: LeafPayload ## Leaf data payload (see below)
VertexType* = enum
## Type of `Aristo Trie` vertex
Leaf
Branch
AristoAccount* = object
## Application relevant part of an Ethereum account. Note that the storage
## data/tree reference is not part of the account (see `LeafPayload` below.)
nonce*: AccountNonce ## Some `uint64` type
balance*: UInt256
codeHash*: Hash32
PayloadType* = enum
## Type of leaf data.
AccountData ## `Aristo account` with vertex IDs links
StoData ## Slot storage data
StorageID* = tuple
## Once a storage tree is allocated, its root vertex ID is registered in
## the leaf payload of an acoount. After subsequent storage tree deletion
## the root vertex ID will be kept in the leaf payload for re-use but set
## disabled (`.isValid` = `false`).
isValid: bool ## See also `isValid()` for `VertexID`
vid: VertexID ## Storage root vertex ID
LeafPayload* = object
## The payload type depends on the sub-tree used. The `VertexID(1)` rooted
## sub-tree only has `AccountData` type payload, stoID-based have StoData
case pType*: PayloadType
of AccountData:
account*: AristoAccount
stoID*: StorageID ## Storage vertex ID (if any)
of StoData:
stoData*: UInt256
VertexRef* = ref object
## Vertex for building a hexary Patricia or Merkle Patricia Trie
pfx*: NibblesBuf
## Portion of path segment - extension nodes are branch nodes with
## non-empty prefix
case vType*: VertexType
of Leaf:
lData*: LeafPayload ## Reference to data payload
of Branch:
bVid*: array[16,VertexID] ## Edge list with vertex IDs
NodeRef* = ref object of RootRef
## Combined record for a *traditional* ``Merkle Patricia Tree` node merged
## with a structural `VertexRef` type object.
vtx*: VertexRef
key*: array[16,HashKey] ## Merkle hash/es for vertices
# ----------------------
VidVtxPair* = object
## Handy helper structure
vid*: VertexID ## Table lookup vertex ID (if any)
vtx*: VertexRef ## Reference to vertex
SavedState* = object
## Last saved state
key*: Hash32 ## Some state hash (if any)
serial*: uint64 ## Generic identifier from application
LayerRef* = ref LayerObj
LayerObj* = object
## Delta layers are stacked implying a tables hierarchy. Table entries on
## a higher level take precedence over lower layer table entries. So an
## existing key-value table entry of a layer on top supersedes same key
## entries on all lower layers. A missing entry on a higher layer indicates
## that the key-value pair might be fond on some lower layer.
##
## A zero value (`nil`, empty hash etc.) is considered am missing key-value
## pair. Tables on the `LayerDelta` may have stray zero key-value pairs for
## missing entries due to repeated transactions while adding and deleting
## entries. There is no need to purge redundant zero entries.
##
## As for `kMap[]` entries, there might be a zero value entriy relating
## (i.e. indexed by the same vertex ID) to an `sMap[]` non-zero value entry
## (of the same layer or a lower layer whatever comes first.) This entry
## is kept as a reminder that the hash value of the `kMap[]` entry needs
## to be re-compiled.
##
## The reasoning behind the above scenario is that every vertex held on the
## `sTab[]` tables must correspond to a hash entry held on the `kMap[]`
## tables. So a corresponding zero value or missing entry produces an
## inconsistent state that must be resolved.
##
sTab*: Table[RootedVertexID,VertexRef] ## Structural vertex table
kMap*: Table[RootedVertexID,HashKey] ## Merkle hash key mapping
vTop*: VertexID ## Last used vertex ID
accLeaves*: Table[Hash32, VertexRef] ## Account path -> VertexRef
stoLeaves*: Table[Hash32, VertexRef] ## Storage path -> VertexRef
txUid*: uint ## Transaction identifier if positive
GetVtxFlag* = enum
PeekCache
## Peek into, but don't update cache - useful on work loads that are
## unfriendly to caches
# ------------------------------------------------------------------------------
# Public helpers (misc)
# ------------------------------------------------------------------------------
func init*(T: type LayerRef): T =
## Constructor, returns empty layer
T()
func hash*(node: NodeRef): Hash =
## Table/KeyedQueue/HashSet mixin
cast[pointer](node).hash
# ------------------------------------------------------------------------------
# Public helpers: `NodeRef` and `LeafPayload`
# ------------------------------------------------------------------------------
proc `==`*(a, b: LeafPayload): bool =
## Beware, potential deep comparison
if unsafeAddr(a) != unsafeAddr(b):
if a.pType != b.pType:
return false
case a.pType:
of AccountData:
if a.account != b.account or
a.stoID != b.stoID:
return false
of StoData:
if a.stoData != b.stoData:
return false
true
proc `==`*(a, b: VertexRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a[]) != unsafeAddr(b[]):
if a.vType != b.vType:
return false
case a.vType:
of Leaf:
if a.pfx != b.pfx or a.lData != b.lData:
return false
of Branch:
if a.pfx != b.pfx or a.bVid != b.bVid:
return false
true
proc `==`*(a, b: NodeRef): bool =
## Beware, potential deep comparison
if a.vtx != b.vtx:
return false
case a.vtx.vType:
of Branch:
for n in 0..15:
if a.vtx.bVid[n] != 0.VertexID or b.vtx.bVid[n] != 0.VertexID:
if a.key[n] != b.key[n]:
return false
else:
discard
true
# ------------------------------------------------------------------------------
# Public helpers, miscellaneous functions
# ------------------------------------------------------------------------------
func dup*(pld: LeafPayload): LeafPayload =
## Duplicate payload.
case pld.pType:
of AccountData:
LeafPayload(
pType: AccountData,
account: pld.account,
stoID: pld.stoID)
of StoData:
LeafPayload(
pType: StoData,
stoData: pld.stoData
)
func dup*(vtx: VertexRef): VertexRef =
## Duplicate vertex.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if vtx.isNil:
VertexRef(nil)
else:
case vtx.vType:
of Leaf:
VertexRef(
vType: Leaf,
pfx: vtx.pfx,
lData: vtx.lData.dup)
of Branch:
VertexRef(
vType: Branch,
pfx: vtx.pfx,
bVid: vtx.bVid)
func dup*(node: NodeRef): NodeRef =
## Duplicate node.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if node.isNil:
NodeRef(nil)
else:
NodeRef(
vtx: node.vtx.dup(),
key: node.key)
func dup*(wp: VidVtxPair): VidVtxPair =
## Safe copy of `wp` argument
VidVtxPair(
vid: wp.vid,
vtx: wp.vtx.dup)
# ---------------
func to*(node: NodeRef; T: type VertexRef): T =
## Extract a copy of the `VertexRef` part from a `NodeRef`.
node.VertexRef.dup
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------