nimbus-eth1/nimbus/db/aristo/aristo_desc/desc_structural.nim
Jordan Hrycaj 3936d4d0ad
Aristo db fixes n updates needed for filter fifo (#1728)
* Set scheduler state as part of the backend descriptor

details:
  Moved type definitions `QidLayoutRef` and `QidSchedRef` to
 `desc_structural.nim` so that it shares the same folder as
  `desc_backend.nim`

* Automatic filter queue table initialisation in backend

details:
  Scheduler can be tweaked or completely disabled

* Updated backend unit tests

details:
+ some code clean up/beautification, reads better now
+ disabled persistent filters so that there is no automated filter
   management which will be implemented next

* Prettify/update unit tests source code

details:
  Mostly replacing the `check()` paradigm by `xCheck()`

* Somewhat simplified backend type management

why:
  Backend objects are labelled with a `BackendType` symbol where the
  `BackendVoid` label is implicitly assumed for a `nil` backend object
  reference.

  To make it easier, a `kind()` function is used now applicable to
  `nil` references as well.

* Fix DB storage layout for filter objects

why:
  Need to store the filter ID with the object

* Implement reverse [] index on fifo

why:
  An integer index argument on `[]` retrieves the QueueID (label) of the
  fifo item while a QueueID argument on `[]` retrieves the index (so
  it is inverse to the former variant).

* Provide iterator over filters as fifo

why:
  This iterator goes along the cascased fifo structure (i.e. in
  historical order)
2023-09-05 14:57:20 +01:00

332 lines
11 KiB
Nim

# nimbus-eth1
# Copyright (c) 2021 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie structural data types
## ================================================
##
{.push raises: [].}
import
std/[sets, tables],
eth/[common, trie/nibbles],
"."/[desc_error, desc_identifiers]
type
VertexType* = enum
## Type of `Aristo Trie` vertex
Leaf
Extension
Branch
AristoAccount* = object
nonce*: AccountNonce ## Some `uint64` type
balance*: UInt256
storageID*: VertexID ## Implies storage root Merkle hash key
codeHash*: Hash256
PayloadType* = enum
## Type of leaf data. On the Aristo backend, data are serialised as
## follows:
##
## * Opaque data => opaque data, marked `0xff`
## * `Account` object => RLP encoded data, marked `0xaa`
## * `AristoAccount` object => serialised account, marked `0x99` or smaller
##
## On deserialisation from the Aristo backend, there is no reverese for an
## `Account` object. It rather is kept as an RLP encoded `Blob`.
##
## * opaque data, marked `0xff` => `RawData`
## * RLP encoded data, marked `0xaa` => `RlpData`
## * erialised account, marked `0x99` or smaller => `AccountData`
##
RawData ## Generic data
RlpData ## Marked RLP encoded
AccountData ## `Aristo account` with vertex IDs links
PayloadRef* = ref object
case pType*: PayloadType
of RawData:
rawBlob*: Blob ## Opaque data, default value
of RlpData:
rlpBlob*: Blob ## Opaque data marked RLP encoded
of AccountData:
account*: AristoAccount
VertexRef* = ref object of RootRef
## Vertex for building a hexary Patricia or Merkle Patricia Trie
case vType*: VertexType
of Leaf:
lPfx*: NibblesSeq ## Portion of path segment
lData*: PayloadRef ## Reference to data payload
of Extension:
ePfx*: NibblesSeq ## Portion of path segment
eVid*: VertexID ## Edge to vertex with ID `eVid`
of Branch:
bVid*: array[16,VertexID] ## Edge list with vertex IDs
NodeRef* = ref object of VertexRef
## Combined record for a *traditional* ``Merkle Patricia Tree` node merged
## with a structural `VertexRef` type object.
error*: AristoError ## Can be used for error signalling
key*: array[16,HashKey] ## Merkle hash/es for vertices
# ----------------------
FilterRef* = ref object
## Delta layer with expanded sequences for quick access
fid*: FilterID ## Filter identifier
src*: HashKey ## Applicable to this state root
trg*: HashKey ## Resulting state root (i.e. `kMap[1]`)
sTab*: Table[VertexID,VertexRef] ## Filter structural vertex table
kMap*: Table[VertexID,HashKey] ## Filter Merkle hash key mapping
vGen*: seq[VertexID] ## Filter unique vertex ID generator
LayerRef* = ref object
## Hexary trie database layer structures. Any layer holds the full
## change relative to the backend.
sTab*: Table[VertexID,VertexRef] ## Structural vertex table
lTab*: Table[LeafTie,VertexID] ## Direct access, path to leaf vertex
kMap*: Table[VertexID,HashLabel] ## Merkle hash key mapping
pAmk*: Table[HashLabel,VertexID] ## Reverse `kMap` entries, hash key lookup
pPrf*: HashSet[VertexID] ## Locked vertices (proof nodes)
vGen*: seq[VertexID] ## Unique vertex ID generator
txUid*: uint ## Transaction identifier if positive
dirty*: bool ## Needs to be hashified if `true`
# ----------------------
QidLayoutRef* = ref object
## Layout of cascaded list of filter ID slot queues where a slot queue
## with index `N+1` serves as an overflow queue of slot queue `N`.
q*: array[4,QidSpec]
QidSpec* = tuple
## Layout of a filter ID slot queue
size: uint ## Capacity of queue, length within `1..wrap`
width: uint ## Instance gaps (relative to prev. item)
wrap: QueueID ## Range `1..wrap` for round-robin queue
QidSchedRef* = ref object of RootRef
## Current state of the filter queues
ctx*: QidLayoutRef ## Organisation of the FIFO
state*: seq[(QueueID,QueueID)] ## Current fill state
const
DefaultQidWrap = QueueID(0x3fff_ffff_ffff_ffffu64)
QidSpecSizeMax* = high(uint32).uint
## Maximum value allowed for a `size` value of a `QidSpec` object
QidSpecWidthMax* = high(uint32).uint
## Maximum value allowed for a `width` value of a `QidSpec` object
# ------------------------------------------------------------------------------
# Private helpers
# ------------------------------------------------------------------------------
func max(a, b, c: int): int =
max(max(a,b),c)
# ------------------------------------------------------------------------------
# Public helpers: `NodeRef` and `PayloadRef`
# ------------------------------------------------------------------------------
proc `==`*(a, b: PayloadRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a) != unsafeAddr(b):
if a.pType != b.pType:
return false
case a.pType:
of RawData:
if a.rawBlob != b.rawBlob:
return false
of RlpData:
if a.rlpBlob != b.rlpBlob:
return false
of AccountData:
if a.account != b.account:
return false
true
proc `==`*(a, b: VertexRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a[]) != unsafeAddr(b[]):
if a.vType != b.vType:
return false
case a.vType:
of Leaf:
if a.lPfx != b.lPfx or a.lData != b.lData:
return false
of Extension:
if a.ePfx != b.ePfx or a.eVid != b.eVid:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != b.bVid[n]:
return false
true
proc `==`*(a, b: NodeRef): bool =
## Beware, potential deep comparison
if a.VertexRef != b.VertexRef:
return false
case a.vType:
of Extension:
if a.key[0] != b.key[0]:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != 0.VertexID and a.key[n] != b.key[n]:
return false
else:
discard
true
# ------------------------------------------------------------------------------
# Public helpers, miscellaneous functions
# ------------------------------------------------------------------------------
proc dup*(pld: PayloadRef): PayloadRef =
## Duplicate payload.
case pld.pType:
of RawData:
PayloadRef(
pType: RawData,
rawBlob: pld.rawBlob)
of RlpData:
PayloadRef(
pType: RlpData,
rlpBlob: pld.rlpBlob)
of AccountData:
PayloadRef(
pType: AccountData,
account: pld.account)
proc dup*(vtx: VertexRef): VertexRef =
## Duplicate vertex.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if vtx.isNil:
VertexRef(nil)
else:
case vtx.vType:
of Leaf:
VertexRef(
vType: Leaf,
lPfx: vtx.lPfx,
lData: vtx.ldata.dup)
of Extension:
VertexRef(
vType: Extension,
ePfx: vtx.ePfx,
eVid: vtx.eVid)
of Branch:
VertexRef(
vType: Branch,
bVid: vtx.bVid)
proc dup*(node: NodeRef): NodeRef =
## Duplicate node.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if node.isNil:
NodeRef(nil)
else:
case node.vType:
of Leaf:
NodeRef(
vType: Leaf,
lPfx: node.lPfx,
lData: node.ldata.dup,
key: node.key)
of Extension:
NodeRef(
vType: Extension,
ePfx: node.ePfx,
eVid: node.eVid,
key: node.key)
of Branch:
NodeRef(
vType: Branch,
bVid: node.bVid,
key: node.key)
proc dup*(layer: LayerRef): LayerRef =
## Duplicate layer.
result = LayerRef(
lTab: layer.lTab,
kMap: layer.kMap,
pAmk: layer.pAmk,
pPrf: layer.pPrf,
vGen: layer.vGen,
txUid: layer.txUid)
for (k,v) in layer.sTab.pairs:
result.sTab[k] = v.dup
# ---------------
func to*(node: NodeRef; T: type VertexRef): T =
## Extract a copy of the `VertexRef` part from a `NodeRef`.
node.VertexRef.dup
func to*(a: array[4,tuple[size, width: int]]; T: type QidLayoutRef): T =
## Convert a size-width array to a `QidLayoutRef` layout. Over large
## array field values are adjusted to its maximal size.
var q: array[4,QidSpec]
for n in 0..3:
q[n] = (min(a[n].size.uint, QidSpecSizeMax),
min(a[n].width.uint, QidSpecWidthMax),
DefaultQidWrap)
q[0].width = 0
T(q: q)
func to*(a: array[4,tuple[size, width, wrap: int]]; T: type QidLayoutRef): T =
## Convert a size-width-wrap array to a `QidLayoutRef` layout. Over large
## array field values are adjusted to its maximal size. Too small `wrap`
## values are adjusted to its minimal size.
var q: array[4,QidSpec]
for n in 0..2:
q[n] = (min(a[n].size.uint, QidSpecSizeMax),
min(a[n].width.uint, QidSpecWidthMax),
QueueID(max(a[n].size + a[n+1].width, a[n].width+1, a[n].wrap)))
q[0].width = 0
q[3] = (min(a[3].size.uint, QidSpecSizeMax),
min(a[3].width.uint, QidSpecWidthMax),
QueueID(max(a[3].size, a[3].width, a[3].wrap)))
T(q: q)
# ------------------------------------------------------------------------------
# Public constructors for filter slot scheduler state
# ------------------------------------------------------------------------------
func init*(T: type QidSchedRef; a: array[4,(int,int)]): T =
## Constructor, see comments at the coverter function `to()` for adjustments
## of the layout argument `a`.
T(ctx: a.to(QidLayoutRef))
func init*(T: type QidSchedRef; a: array[4,(int,int,int)]): T =
## Constructor, see comments at the coverter function `to()` for adjustments
## of the layout argument `a`.
T(ctx: a.to(QidLayoutRef))
func init*(T: type QidSchedRef; ctx: QidLayoutRef): T =
T(ctx: ctx)
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------