nimbus-eth1/nimbus/db/aristo/aristo_desc/desc_structural.nim
Jordan Hrycaj 465d694834
Aristo db implement filter storage scheduler (#1713)
* Rename FilterID => QueueID

why:
  The current usage does not identify a particular filter but uses it as
  storage tag to manage it on the database (to be organised in a set of
  FIFOs or queues.)

* Split `aristo_filter` source into sub-files

why:
  Make space for filter management API

* Store filter queue IDs in pairs on the backend

why:
  Any pair will will describe a FIFO accessed by bottom/top IDs

* Reorg some source file names

why:
  The "aristo_" prefix for make local/private files is tedious to
  use, so removed.

* Implement filter slot scheduler

details:
  Filters will be stored on the database on cascaded FIFOs. When a FIFO
  queue is full, some filter items are bundled together and stored on the
  next FIFO.
2023-08-25 23:53:59 +01:00

262 lines
7.8 KiB
Nim

# nimbus-eth1
# Copyright (c) 2021 Status Research & Development GmbH
# Licensed under either of
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
# http://www.apache.org/licenses/LICENSE-2.0)
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
# http://opensource.org/licenses/MIT)
# at your option. This file may not be copied, modified, or distributed
# except according to those terms.
## Aristo DB -- Patricia Trie structural data types
## ================================================
##
{.push raises: [].}
import
std/[sets, tables],
eth/[common, trie/nibbles],
"."/[desc_error, desc_identifiers]
type
VertexType* = enum
## Type of `Aristo Trie` vertex
Leaf
Extension
Branch
AristoAccount* = object
nonce*: AccountNonce ## Some `uint64` type
balance*: UInt256
storageID*: VertexID ## Implies storage root Merkle hash key
codeHash*: Hash256
PayloadType* = enum
## Type of leaf data. On the Aristo backend, data are serialised as
## follows:
##
## * Opaque data => opaque data, marked `0xff`
## * `Account` object => RLP encoded data, marked `0xaa`
## * `AristoAccount` object => serialised account, marked `0x99` or smaller
##
## On deserialisation from the Aristo backend, there is no reverese for an
## `Account` object. It rather is kept as an RLP encoded `Blob`.
##
## * opaque data, marked `0xff` => `RawData`
## * RLP encoded data, marked `0xaa` => `RlpData`
## * erialised account, marked `0x99` or smaller => `AccountData`
##
RawData ## Generic data
RlpData ## Marked RLP encoded
AccountData ## `Aristo account` with vertex IDs links
PayloadRef* = ref object
case pType*: PayloadType
of RawData:
rawBlob*: Blob ## Opaque data, default value
of RlpData:
rlpBlob*: Blob ## Opaque data marked RLP encoded
of AccountData:
account*: AristoAccount
VertexRef* = ref object of RootRef
## Vertex for building a hexary Patricia or Merkle Patricia Trie
case vType*: VertexType
of Leaf:
lPfx*: NibblesSeq ## Portion of path segment
lData*: PayloadRef ## Reference to data payload
of Extension:
ePfx*: NibblesSeq ## Portion of path segment
eVid*: VertexID ## Edge to vertex with ID `eVid`
of Branch:
bVid*: array[16,VertexID] ## Edge list with vertex IDs
NodeRef* = ref object of VertexRef
## Combined record for a *traditional* ``Merkle Patricia Tree` node merged
## with a structural `VertexRef` type object.
error*: AristoError ## Can be used for error signalling
key*: array[16,HashKey] ## Merkle hash/es for vertices
# ----------------------
FilterRef* = ref object
## Delta layer with expanded sequences for quick access
src*: HashKey ## Applicable to this state root
trg*: HashKey ## Resulting state root (i.e. `kMap[1]`)
sTab*: Table[VertexID,VertexRef] ## Filter structural vertex table
kMap*: Table[VertexID,HashKey] ## Filter Merkle hash key mapping
vGen*: seq[VertexID] ## Filter unique vertex ID generator
LayerRef* = ref object
## Hexary trie database layer structures. Any layer holds the full
## change relative to the backend.
sTab*: Table[VertexID,VertexRef] ## Structural vertex table
lTab*: Table[LeafTie,VertexID] ## Direct access, path to leaf vertex
kMap*: Table[VertexID,HashLabel] ## Merkle hash key mapping
pAmk*: Table[HashLabel,VertexID] ## Reverse `kMap` entries, hash key lookup
pPrf*: HashSet[VertexID] ## Locked vertices (proof nodes)
vGen*: seq[VertexID] ## Unique vertex ID generator
txUid*: uint ## Transaction identifier if positive
dirty*: bool ## Needs to be hashified if `true`
# ------------------------------------------------------------------------------
# Public helpers: `NodeRef` and `PayloadRef`
# ------------------------------------------------------------------------------
proc `==`*(a, b: PayloadRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a) != unsafeAddr(b):
if a.pType != b.pType:
return false
case a.pType:
of RawData:
if a.rawBlob != b.rawBlob:
return false
of RlpData:
if a.rlpBlob != b.rlpBlob:
return false
of AccountData:
if a.account != b.account:
return false
true
proc `==`*(a, b: VertexRef): bool =
## Beware, potential deep comparison
if a.isNil:
return b.isNil
if b.isNil:
return false
if unsafeAddr(a[]) != unsafeAddr(b[]):
if a.vType != b.vType:
return false
case a.vType:
of Leaf:
if a.lPfx != b.lPfx or a.lData != b.lData:
return false
of Extension:
if a.ePfx != b.ePfx or a.eVid != b.eVid:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != b.bVid[n]:
return false
true
proc `==`*(a, b: NodeRef): bool =
## Beware, potential deep comparison
if a.VertexRef != b.VertexRef:
return false
case a.vType:
of Extension:
if a.key[0] != b.key[0]:
return false
of Branch:
for n in 0..15:
if a.bVid[n] != 0.VertexID and a.key[n] != b.key[n]:
return false
else:
discard
true
# ------------------------------------------------------------------------------
# Public helpers, miscellaneous functions
# ------------------------------------------------------------------------------
proc dup*(pld: PayloadRef): PayloadRef =
## Duplicate payload.
case pld.pType:
of RawData:
PayloadRef(
pType: RawData,
rawBlob: pld.rawBlob)
of RlpData:
PayloadRef(
pType: RlpData,
rlpBlob: pld.rlpBlob)
of AccountData:
PayloadRef(
pType: AccountData,
account: pld.account)
proc dup*(vtx: VertexRef): VertexRef =
## Duplicate vertex.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if vtx.isNil:
VertexRef(nil)
else:
case vtx.vType:
of Leaf:
VertexRef(
vType: Leaf,
lPfx: vtx.lPfx,
lData: vtx.ldata.dup)
of Extension:
VertexRef(
vType: Extension,
ePfx: vtx.ePfx,
eVid: vtx.eVid)
of Branch:
VertexRef(
vType: Branch,
bVid: vtx.bVid)
proc dup*(node: NodeRef): NodeRef =
## Duplicate node.
# Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.)
if node.isNil:
NodeRef(nil)
else:
case node.vType:
of Leaf:
NodeRef(
vType: Leaf,
lPfx: node.lPfx,
lData: node.ldata.dup,
key: node.key)
of Extension:
NodeRef(
vType: Extension,
ePfx: node.ePfx,
eVid: node.eVid,
key: node.key)
of Branch:
NodeRef(
vType: Branch,
bVid: node.bVid,
key: node.key)
proc dup*(layer: LayerRef): LayerRef =
## Duplicate layer.
result = LayerRef(
lTab: layer.lTab,
kMap: layer.kMap,
pAmk: layer.pAmk,
pPrf: layer.pPrf,
vGen: layer.vGen,
txUid: layer.txUid)
for (k,v) in layer.sTab.pairs:
result.sTab[k] = v.dup
proc dup*(filter: FilterRef): FilterRef =
## Duplicate layer.
result = FilterRef(
src: filter.src,
kMap: filter.kMap,
vGen: filter.vGen,
trg: filter.trg)
for (k,v) in filter.sTab.pairs:
result.sTab[k] = v.dup
proc to*(node: NodeRef; T: type VertexRef): T =
## Extract a copy of the `VertexRef` part from a `NodeRef`.
node.VertexRef.dup
# ------------------------------------------------------------------------------
# End
# ------------------------------------------------------------------------------