nimbus-eth1/fluffy/network/wire/portal_protocol.nim
bhartnett b13f06fcfb
Fluffy state portal rpc validation (#2719)
* Validate content key in portal_stateLocalContent.

* Add additional validation to stateStore rpc method.
2024-10-09 20:23:46 +08:00

1792 lines
64 KiB
Nim

# Fluffy
# Copyright (c) 2021-2024 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
## Implementation of the Portal wire protocol as specified at:
## https://github.com/ethereum/portal-network-specs/blob/master/portal-wire-protocol.md
{.push raises: [].}
import
std/[sequtils, sets, algorithm, tables],
stew/[byteutils, leb128, endians2],
results,
chronicles,
chronos,
nimcrypto/hash,
bearssl,
ssz_serialization,
metrics,
faststreams,
minilru,
eth/rlp,
eth/p2p/discoveryv5/[protocol, node, enr, routing_table, random2, nodes_verification],
"."/[portal_stream, portal_protocol_config],
./messages
export messages, routing_table, protocol
declareCounter portal_message_requests_incoming,
"Portal wire protocol incoming message requests",
labels = ["protocol_id", "message_type"]
declareCounter portal_message_decoding_failures,
"Portal wire protocol message decoding failures", labels = ["protocol_id"]
declareCounter portal_message_requests_outgoing,
"Portal wire protocol outgoing message requests",
labels = ["protocol_id", "message_type"]
declareCounter portal_message_response_incoming,
"Portal wire protocol incoming message responses",
labels = ["protocol_id", "message_type"]
const requestBuckets = [1.0, 3.0, 5.0, 7.0, 9.0, Inf]
declareHistogram portal_lookup_node_requests,
"Portal wire protocol amount of requests per node lookup",
labels = ["protocol_id"],
buckets = requestBuckets
declareHistogram portal_lookup_content_requests,
"Portal wire protocol amount of requests per node lookup",
labels = ["protocol_id"],
buckets = requestBuckets
declareCounter portal_lookup_content_failures,
"Portal wire protocol content lookup failures", labels = ["protocol_id"]
const contentKeysBuckets = [0.0, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, Inf]
declareHistogram portal_content_keys_offered,
"Portal wire protocol amount of content keys per offer message send",
labels = ["protocol_id"],
buckets = contentKeysBuckets
declareHistogram portal_content_keys_accepted,
"Portal wire protocol amount of content keys per accept message received",
labels = ["protocol_id"],
buckets = contentKeysBuckets
declareCounter portal_gossip_offers_successful,
"Portal wire protocol successful content offers from neighborhood gossip",
labels = ["protocol_id"]
declareCounter portal_gossip_offers_failed,
"Portal wire protocol failed content offers from neighborhood gossip",
labels = ["protocol_id"]
declareCounter portal_gossip_with_lookup,
"Portal wire protocol neighborhood gossip that required a node lookup",
labels = ["protocol_id"]
declareCounter portal_gossip_without_lookup,
"Portal wire protocol neighborhood gossip that did not require a node lookup",
labels = ["protocol_id"]
declareCounter portal_poke_offers,
"Portal wire protocol offers through poke mechanism", labels = ["protocol_id"]
# Note: These metrics are to get some idea on how many enrs are send on average.
# Relevant issue: https://github.com/ethereum/portal-network-specs/issues/136
const enrsBuckets = [0.0, 1.0, 3.0, 5.0, 8.0, 9.0, Inf]
declareHistogram portal_nodes_enrs_packed,
"Portal wire protocol amount of enrs packed in a nodes message",
labels = ["protocol_id"],
buckets = enrsBuckets
# This one will currently hit the max numbers because all neighbours are send,
# not only the ones closer to the content.
declareHistogram portal_content_enrs_packed,
"Portal wire protocol amount of enrs packed in a content message",
labels = ["protocol_id"],
buckets = enrsBuckets
const distanceBuckets = [
float64 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256,
]
declareHistogram portal_find_content_log_distance,
"Portal wire protocol logarithmic distance of requested content",
labels = ["protocol_id"],
buckets = distanceBuckets
declareHistogram portal_offer_log_distance,
"Portal wire protocol logarithmic distance of offered content",
labels = ["protocol_id"],
buckets = distanceBuckets
logScope:
topics = "portal_wire"
const
alpha = 3 ## Kademlia concurrency factor
enrsResultLimit* = 32 ## Maximum amount of ENRs in the total Nodes messages
## that will be processed
refreshInterval = 5.minutes ## Interval of launching a random query to
## refresh the routing table.
revalidateMax = 4000 ## Revalidation of a peer is done between 0 and this
## value in milliseconds
initialLookups = 1 ## Amount of lookups done when populating the routing table
# These are the concurrent offers per Portal wire protocol that is running.
# Using the `offerQueue` allows for limiting the amount of offers send and
# thus how many streams can be started.
# TODO:
# More thought needs to go into this as it is currently on a per network
# basis. Keep it simple like that? Or limit it better at the stream transport
# level? In the latter case, this might still need to be checked/blocked at
# the very start of sending the offer, because blocking/waiting too long
# between the received accept message and actually starting the stream and
# sending data could give issues due to timeouts on the other side.
# And then there are still limits to be applied also for FindContent and the
# incoming directions.
concurrentOffers = 50
type
ToContentIdHandler* =
proc(contentKey: ContentKeyByteList): results.Opt[ContentId] {.raises: [], gcsafe.}
DbGetHandler* = proc(
contentKey: ContentKeyByteList, contentId: ContentId
): results.Opt[seq[byte]] {.raises: [], gcsafe.}
DbStoreHandler* = proc(
contentKey: ContentKeyByteList, contentId: ContentId, content: seq[byte]
) {.raises: [], gcsafe.}
DbRadiusHandler* = proc(): UInt256 {.raises: [], gcsafe.}
PortalProtocolId* = array[2, byte]
RadiusCache* = LRUCache[NodeId, UInt256]
ContentKV* = object
contentKey*: ContentKeyByteList
content*: seq[byte]
OfferRequestType = enum
Direct
Database
OfferRequest = object
dst: Node
case kind: OfferRequestType
of Direct:
contentList: List[ContentKV, contentKeysLimit]
of Database:
contentKeys: ContentKeysList
PortalProtocol* = ref object of TalkProtocol
protocolId*: PortalProtocolId
routingTable*: RoutingTable
baseProtocol*: protocol.Protocol
toContentId*: ToContentIdHandler
dbGet*: DbGetHandler
dbPut*: DbStoreHandler
dataRadius*: DbRadiusHandler
bootstrapRecords*: seq[Record]
lastLookup: chronos.Moment
refreshLoop: Future[void]
revalidateLoop: Future[void]
stream*: PortalStream
radiusCache: RadiusCache
offerQueue: AsyncQueue[OfferRequest]
offerWorkers: seq[Future[void]]
disablePoke: bool
pingTimings: Table[NodeId, chronos.Moment]
maxGossipNodes: int
PortalResult*[T] = Result[T, string]
FoundContentKind* = enum
Nodes
Content
FoundContent* = object
src*: Node
case kind*: FoundContentKind
of Content:
content*: seq[byte]
utpTransfer*: bool
of Nodes:
nodes*: seq[Node]
ContentLookupResult* = object
content*: seq[byte]
utpTransfer*: bool
# List of nodes which do not have requested content, and for which
# content is in their range
nodesInterestedInContent*: seq[Node]
TraceResponse* = object
durationMs*: int64
respondedWith*: seq[NodeId]
NodeMetadata* = object
enr*: Record
distance*: UInt256
TraceObject* = object
origin*: NodeId
targetId: UInt256
receivedFrom*: Opt[NodeId]
responses*: Table[string, TraceResponse]
metadata*: Table[string, NodeMetadata]
cancelled*: seq[NodeId]
startedAtMs*: int64
TraceContentLookupResult* = object
content*: Opt[seq[byte]]
utpTransfer*: bool
trace*: TraceObject
func init*(T: type ContentKV, contentKey: ContentKeyByteList, content: seq[byte]): T =
ContentKV(contentKey: contentKey, content: content)
func init*(
T: type ContentLookupResult,
content: seq[byte],
utpTransfer: bool,
nodesInterestedInContent: seq[Node],
): T =
ContentLookupResult(
content: content,
utpTransfer: utpTransfer,
nodesInterestedInContent: nodesInterestedInContent,
)
func getProtocolId*(
network: PortalNetwork, subnetwork: PortalSubnetwork
): PortalProtocolId =
const portalPrefix = byte(0x50)
case network
of PortalNetwork.none, PortalNetwork.mainnet:
case subnetwork
of PortalSubnetwork.state:
[portalPrefix, 0x0A]
of PortalSubnetwork.history:
[portalPrefix, 0x0B]
of PortalSubnetwork.beacon:
[portalPrefix, 0x0C]
of PortalSubnetwork.transactionIndex:
[portalPrefix, 0x0D]
of PortalSubnetwork.verkleState:
[portalPrefix, 0x0E]
of PortalSubnetwork.transactionGossip:
[portalPrefix, 0x0F]
of PortalNetwork.angelfood:
case subnetwork
of PortalSubnetwork.state:
[portalPrefix, 0x4A]
of PortalSubnetwork.history:
[portalPrefix, 0x4B]
of PortalSubnetwork.beacon:
[portalPrefix, 0x4C]
of PortalSubnetwork.transactionIndex:
[portalPrefix, 0x4D]
of PortalSubnetwork.verkleState:
[portalPrefix, 0x4E]
of PortalSubnetwork.transactionGossip:
[portalPrefix, 0x4F]
func `$`(id: PortalProtocolId): string =
id.toHex()
proc addNode*(p: PortalProtocol, node: Node): NodeStatus =
p.routingTable.addNode(node)
proc addNode*(p: PortalProtocol, r: Record): bool =
p.addNode(Node.fromRecord(r)) == Added
func getNode*(p: PortalProtocol, id: NodeId): Opt[Node] =
p.routingTable.getNode(id)
func localNode*(p: PortalProtocol): Node =
p.baseProtocol.localNode
func neighbours*(p: PortalProtocol, id: NodeId, seenOnly = false): seq[Node] =
p.routingTable.neighbours(id = id, seenOnly = seenOnly)
func distance(p: PortalProtocol, a, b: NodeId): UInt256 =
p.routingTable.distance(a, b)
func logDistance(p: PortalProtocol, a, b: NodeId): uint16 =
p.routingTable.logDistance(a, b)
func inRange(
p: PortalProtocol, nodeId: NodeId, nodeRadius: UInt256, contentId: ContentId
): bool =
let distance = p.distance(nodeId, contentId)
distance <= nodeRadius
proc inRange*(p: PortalProtocol, contentId: ContentId): bool =
p.inRange(p.localNode.id, p.dataRadius(), contentId)
func truncateEnrs(
nodes: seq[Node], maxSize: int, enrOverhead: int
): List[ByteList[2048], 32] =
var enrs: List[ByteList[2048], 32]
var totalSize = 0
for n in nodes:
let enr = ByteList[2048].init(n.record.raw)
if totalSize + enr.len() + enrOverhead <= maxSize:
let res = enrs.add(enr)
# With max payload of discv5 and the sizes of ENRs this should not occur.
doAssert(res, "32 limit will not be reached")
totalSize = totalSize + enr.len() + enrOverhead
else:
break
enrs
proc handlePing(p: PortalProtocol, ping: PingMessage, srcId: NodeId): seq[byte] =
# TODO: This should become custom per Portal Network
# TODO: Need to think about the effect of malicious actor sending lots of
# pings from different nodes to clear the LRU.
let customPayloadDecoded =
try:
SSZ.decode(ping.customPayload.asSeq(), CustomPayload)
except SerializationError:
# invalid custom payload, send empty back
return @[]
p.radiusCache.put(srcId, customPayloadDecoded.dataRadius)
let customPayload = CustomPayload(dataRadius: p.dataRadius())
let p = PongMessage(
enrSeq: p.localNode.record.seqNum,
customPayload: ByteList[2048](SSZ.encode(customPayload)),
)
encodeMessage(p)
proc handleFindNodes(p: PortalProtocol, fn: FindNodesMessage): seq[byte] =
if fn.distances.len == 0:
let enrs = List[ByteList[2048], 32](@[])
encodeMessage(NodesMessage(total: 1, enrs: enrs))
elif fn.distances.contains(0):
# A request for our own record.
let enr = ByteList[2048](rlp.encode(p.localNode.record))
encodeMessage(NodesMessage(total: 1, enrs: List[ByteList[2048], 32](@[enr])))
else:
let distances = fn.distances.asSeq()
if distances.all(
proc(x: uint16): bool =
return x <= 256
):
let nodes = p.routingTable.neighboursAtDistances(distances, seenOnly = true)
# TODO: Total amount of messages is set fixed to 1 for now, else we would
# need to either move the send of the talkresp messages here, or allow for
# returning multiple messages.
# On the long run, it might just be better to use a stream in these cases?
# Size calculation is done to truncate the ENR results in order to not go
# over the discv5 packet size limits. ENRs are sorted so the closest nodes
# will still be passed.
const
nodesOverhead = 1 + 1 + 4 # msg id + total + container offset
maxPayloadSize = maxDiscv5TalkRespPayload - nodesOverhead
enrOverhead = 4 # per added ENR, 4 bytes offset overhead
let enrs = truncateEnrs(nodes, maxPayloadSize, enrOverhead)
portal_nodes_enrs_packed.observe(enrs.len().int64, labelValues = [$p.protocolId])
encodeMessage(NodesMessage(total: 1, enrs: enrs))
else:
# invalid request, send empty back
let enrs = List[ByteList[2048], 32](@[])
encodeMessage(NodesMessage(total: 1, enrs: enrs))
proc handleFindContent(
p: PortalProtocol, fc: FindContentMessage, srcId: NodeId
): seq[byte] =
const
contentOverhead = 1 + 1 # msg id + SSZ Union selector
maxPayloadSize = maxDiscv5TalkRespPayload - contentOverhead
enrOverhead = 4 # per added ENR, 4 bytes offset overhead
let contentId = p.toContentId(fc.contentKey).valueOr:
# Return empty response when content key validation fails
# TODO: Better would be to return no message at all? Needs changes on
# discv5 layer.
return @[]
let logDistance = p.logDistance(contentId, p.localNode.id)
portal_find_content_log_distance.observe(
int64(logDistance), labelValues = [$p.protocolId]
)
# Check first if content is in range, as this is a cheaper operation
if p.inRange(contentId):
let contentResult = p.dbGet(fc.contentKey, contentId)
if contentResult.isOk():
let content = contentResult.get()
if content.len <= maxPayloadSize:
return encodeMessage(
ContentMessage(
contentMessageType: contentType, content: ByteList[2048](content)
)
)
else:
let connectionId = p.stream.addContentRequest(srcId, content)
return encodeMessage(
ContentMessage(
contentMessageType: connectionIdType, connectionId: connectionId
)
)
# Node does not have the content, or content is not even in radius,
# send closest neighbours to the requested content id.
let
closestNodes = p.routingTable.neighbours(NodeId(contentId), seenOnly = true)
enrs = truncateEnrs(closestNodes, maxPayloadSize, enrOverhead)
portal_content_enrs_packed.observe(enrs.len().int64, labelValues = [$p.protocolId])
encodeMessage(ContentMessage(contentMessageType: enrsType, enrs: enrs))
proc handleOffer(p: PortalProtocol, o: OfferMessage, srcId: NodeId): seq[byte] =
# Early return when our contentQueue is full. This means there is a backlog
# of content to process and potentially gossip around. Don't accept more
# data in this case.
if p.stream.contentQueue.full():
return encodeMessage(
AcceptMessage(
connectionId: Bytes2([byte 0x00, 0x00]),
contentKeys: ContentKeysBitList.init(o.contentKeys.len),
)
)
var contentKeysBitList = ContentKeysBitList.init(o.contentKeys.len)
var contentKeys = ContentKeysList.init(@[])
# TODO: Do we need some protection against a peer offering lots (64x) of
# content that fits our Radius but is actually bogus?
# Additional TODO, but more of a specification clarification: What if we don't
# want any of the content? Reply with empty bitlist and a connectionId of
# all zeroes but don't actually allow an uTP connection?
for i, contentKey in o.contentKeys:
let contentIdResult = p.toContentId(contentKey)
if contentIdResult.isOk():
let contentId = contentIdResult.get()
let logDistance = p.logDistance(contentId, p.localNode.id)
portal_offer_log_distance.observe(
int64(logDistance), labelValues = [$p.protocolId]
)
if p.inRange(contentId):
if p.dbGet(contentKey, contentId).isErr:
contentKeysBitList.setBit(i)
discard contentKeys.add(contentKey)
else:
# Return empty response when content key validation fails
return @[]
let connectionId =
if contentKeysBitList.countOnes() != 0:
p.stream.addContentOffer(srcId, contentKeys)
else:
# When the node does not accept any of the content offered, reply with an
# all zeroes bitlist and connectionId.
# Note: What to do in this scenario is not defined in the Portal spec.
Bytes2([byte 0x00, 0x00])
encodeMessage(
AcceptMessage(connectionId: connectionId, contentKeys: contentKeysBitList)
)
proc messageHandler(
protocol: TalkProtocol,
request: seq[byte],
srcId: NodeId,
srcUdpAddress: Address,
nodeOpt: Opt[Node],
): seq[byte] =
doAssert(protocol of PortalProtocol)
logScope:
protocolId = p.protocolId
let p = PortalProtocol(protocol)
let decoded = decodeMessage(request)
if decoded.isOk():
let message = decoded.get()
trace "Received message request", srcId, srcUdpAddress, kind = message.kind
# Received a proper Portal message, check first if an ENR is provided by
# the discovery v5 layer and add it to the portal network routing table.
# If not provided through the handshake, try to get it from the discovery v5
# routing table.
# When the node would be eligable for the portal network routing table, it
# is possible that it exists in the base discv5 routing table as the same
# node ids are used. It is not certain at all however as more nodes might
# exists on the base layer, and it will also depend on the distance,
# order of lookups, etc.
# Note: As third measure, could run a findNodes request with distance 0.
if nodeOpt.isSome():
let node = nodeOpt.value()
let status = p.addNode(node)
trace "Adding new node to routing table after incoming request", status, node
else:
let nodeOpt = p.baseProtocol.getNode(srcId)
if nodeOpt.isSome():
let node = nodeOpt.value()
let status = p.addNode(node)
trace "Adding new node to routing table after incoming request", status, node
portal_message_requests_incoming.inc(labelValues = [$p.protocolId, $message.kind])
case message.kind
of MessageKind.ping:
p.handlePing(message.ping, srcId)
of MessageKind.findNodes:
p.handleFindNodes(message.findNodes)
of MessageKind.findContent:
p.handleFindContent(message.findContent, srcId)
of MessageKind.offer:
p.handleOffer(message.offer, srcId)
else:
# This would mean a that Portal wire response message is being send over a
# discv5 talkreq message.
debug "Invalid Portal wire message type over talkreq", kind = message.kind
@[]
else:
portal_message_decoding_failures.inc(labelValues = [$p.protocolId])
debug "Packet decoding error", error = decoded.error, srcId, srcUdpAddress
@[]
proc new*(
T: type PortalProtocol,
baseProtocol: protocol.Protocol,
protocolId: PortalProtocolId,
toContentId: ToContentIdHandler,
dbGet: DbGetHandler,
dbPut: DbStoreHandler,
dbRadius: DbRadiusHandler,
stream: PortalStream,
bootstrapRecords: openArray[Record] = [],
distanceCalculator: DistanceCalculator = XorDistanceCalculator,
config: PortalProtocolConfig = defaultPortalProtocolConfig,
): T =
let proto = PortalProtocol(
protocolHandler: messageHandler,
protocolId: protocolId,
routingTable: RoutingTable.init(
baseProtocol.localNode, config.bitsPerHop, config.tableIpLimits, baseProtocol.rng,
distanceCalculator,
),
baseProtocol: baseProtocol,
toContentId: toContentId,
dbGet: dbGet,
dbPut: dbPut,
dataRadius: dbRadius,
bootstrapRecords: @bootstrapRecords,
stream: stream,
radiusCache: RadiusCache.init(256),
offerQueue: newAsyncQueue[OfferRequest](concurrentOffers),
disablePoke: config.disablePoke,
pingTimings: Table[NodeId, chronos.Moment](),
maxGossipNodes: config.maxGossipNodes,
)
proto.baseProtocol.registerTalkProtocol(@(proto.protocolId), proto).expect(
"Only one protocol should have this id"
)
proto
# Sends the discv5 talkreq message with provided Portal message, awaits and
# validates the proper response, and updates the Portal Network routing table.
proc reqResponse[Request: SomeMessage, Response: SomeMessage](
p: PortalProtocol, dst: Node, request: Request
): Future[PortalResult[Response]] {.async: (raises: [CancelledError]).} =
logScope:
protocolId = p.protocolId
trace "Send message request", dstId = dst.id, kind = messageKind(Request)
portal_message_requests_outgoing.inc(
labelValues = [$p.protocolId, $messageKind(Request)]
)
let talkresp =
await talkReq(p.baseProtocol, dst, @(p.protocolId), encodeMessage(request))
# Note: Failure of `decodeMessage` might also simply mean that the peer is
# not supporting the specific talk protocol, as according to specification
# an empty response needs to be send in that case.
# See: https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#talkreq-request-0x05
let messageResponse = talkresp
.mapErr(
proc(x: cstring): string =
$x
)
.flatMap(
proc(x: seq[byte]): Result[Message, string] =
decodeMessage(x)
)
.flatMap(
proc(m: Message): Result[Response, string] =
getInnerMessage[Response](m)
)
if messageResponse.isOk():
trace "Received message response",
srcId = dst.id, srcAddress = dst.address, kind = messageKind(Response)
portal_message_response_incoming.inc(
labelValues = [$p.protocolId, $messageKind(Response)]
)
p.routingTable.setJustSeen(dst)
else:
debug "Error receiving message response",
error = messageResponse.error, srcId = dst.id, srcAddress = dst.address
p.pingTimings.del(dst.id)
p.routingTable.replaceNode(dst)
return messageResponse
proc pingImpl*(
p: PortalProtocol, dst: Node
): Future[PortalResult[PongMessage]] {.async: (raises: [CancelledError]).} =
let customPayload = CustomPayload(dataRadius: p.dataRadius())
let ping = PingMessage(
enrSeq: p.localNode.record.seqNum,
customPayload: ByteList[2048](SSZ.encode(customPayload)),
)
return await reqResponse[PingMessage, PongMessage](p, dst, ping)
proc findNodesImpl*(
p: PortalProtocol, dst: Node, distances: List[uint16, 256]
): Future[PortalResult[NodesMessage]] {.async: (raises: [CancelledError]).} =
let fn = FindNodesMessage(distances: distances)
# TODO Add nodes validation
return await reqResponse[FindNodesMessage, NodesMessage](p, dst, fn)
proc findContentImpl*(
p: PortalProtocol, dst: Node, contentKey: ContentKeyByteList
): Future[PortalResult[ContentMessage]] {.async: (raises: [CancelledError]).} =
let fc = FindContentMessage(contentKey: contentKey)
return await reqResponse[FindContentMessage, ContentMessage](p, dst, fc)
proc offerImpl*(
p: PortalProtocol, dst: Node, contentKeys: ContentKeysList
): Future[PortalResult[AcceptMessage]] {.async: (raises: [CancelledError]).} =
let offer = OfferMessage(contentKeys: contentKeys)
return await reqResponse[OfferMessage, AcceptMessage](p, dst, offer)
proc recordsFromBytes*(
rawRecords: List[ByteList[2048], 32]
): PortalResult[seq[Record]] =
var records: seq[Record]
for r in rawRecords.asSeq():
let record = enr.Record.fromBytes(r.asSeq()).valueOr:
# If any of the ENRs is invalid, fail immediatly. This is similar as what
# is done on the discovery v5 layer.
return err("Deserialization of an ENR failed")
records.add(record)
ok(records)
proc ping*(
p: PortalProtocol, dst: Node
): Future[PortalResult[PongMessage]] {.async: (raises: [CancelledError]).} =
let pongResponse = await p.pingImpl(dst)
if pongResponse.isOk():
# Update last time we pinged this node
p.pingTimings[dst.id] = now(chronos.Moment)
let pong = pongResponse.get()
# TODO: This should become custom per Portal Network
let customPayloadDecoded =
try:
SSZ.decode(pong.customPayload.asSeq(), CustomPayload)
except SerializationError:
# invalid custom payload
return err("Pong message contains invalid custom payload")
p.radiusCache.put(dst.id, customPayloadDecoded.dataRadius)
return pongResponse
proc findNodes*(
p: PortalProtocol, dst: Node, distances: seq[uint16]
): Future[PortalResult[seq[Node]]] {.async: (raises: [CancelledError]).} =
let nodesMessage = await p.findNodesImpl(dst, List[uint16, 256](distances))
if nodesMessage.isOk():
let records = recordsFromBytes(nodesMessage.get().enrs)
if records.isOk():
# TODO: distance function is wrong here for state, fix + tests
return ok(verifyNodesRecords(records.get(), dst, enrsResultLimit, distances))
else:
return err(records.error)
else:
return err(nodesMessage.error)
proc findContent*(
p: PortalProtocol, dst: Node, contentKey: ContentKeyByteList
): Future[PortalResult[FoundContent]] {.async: (raises: [CancelledError]).} =
logScope:
node = dst
contentKey
let contentMessageResponse = await p.findContentImpl(dst, contentKey)
if contentMessageResponse.isOk():
let m = contentMessageResponse.get()
case m.contentMessageType
of connectionIdType:
let nodeAddress = NodeAddress.init(dst)
if nodeAddress.isNone():
# It should not happen as we are already after the succesfull
# talkreq/talkresp cycle
error "Trying to connect to node with unknown address", id = dst.id
return err("Trying to connect to node with unknown address")
# uTP protocol uses BE for all values in the header, incl. connection id
let socket = (
await p.stream.connectTo(
nodeAddress.unsafeGet(), uint16.fromBytesBE(m.connectionId)
)
).valueOr:
debug "uTP connection error for find content", error
return err("Error connecting uTP socket")
try:
# Read all bytes from the socket
# This will either end with a FIN, or because the read action times out.
# A FIN does not necessarily mean that the data read is complete.
# Further validation is required, using a length prefix here might be
# beneficial for this.
let readFut = socket.read()
readFut.cancelCallback = proc(udate: pointer) {.gcsafe.} =
debug "Socket read cancelled", socketKey = socket.socketKey
# In case this `findContent` gets cancelled while reading the data,
# send a FIN and clean up the socket.
socket.close()
if await readFut.withTimeout(p.stream.contentReadTimeout):
let content = await readFut
# socket received remote FIN and drained whole buffer, it can be
# safely destroyed without notifing remote
debug "Socket read fully", socketKey = socket.socketKey
socket.destroy()
return ok(
FoundContent(src: dst, kind: Content, content: content, utpTransfer: true)
)
else:
debug "Socket read time-out", socketKey = socket.socketKey
# Note: This might look a bit strange, but not doing a socket.close()
# here as this is already done internally. utp_socket `checkTimeouts`
# already does a socket.destroy() on timeout. Might want to change the
# API on this later though.
return err("Reading data from socket timed out, content request failed")
except CancelledError as exc:
# even though we already installed cancelCallback on readFut, it is worth
# catching CancelledError in case that withTimeout throws CancelledError
# but readFut have already finished.
debug "Socket read cancelled", socketKey = socket.socketKey
socket.close()
raise exc
of contentType:
return ok(
FoundContent(
src: dst, kind: Content, content: m.content.asSeq(), utpTransfer: false
)
)
of enrsType:
let records = recordsFromBytes(m.enrs)
if records.isOk():
let verifiedNodes = verifyNodesRecords(records.get(), dst, enrsResultLimit)
return ok(FoundContent(src: dst, kind: Nodes, nodes: verifiedNodes))
else:
return err("Content message returned invalid ENRs")
else:
warn "FindContent failed due to find content request failure ",
error = contentMessageResponse.error
return err("No content response")
proc getContentKeys(o: OfferRequest): ContentKeysList =
case o.kind
of Direct:
var contentKeys: ContentKeysList
for info in o.contentList:
discard contentKeys.add(info.contentKey)
return contentKeys
of Database:
return o.contentKeys
func getMaxOfferedContentKeys*(protocolIdLen: uint32, maxKeySize: uint32): int =
## Calculates how many ContentKeys will fit in one offer message which
## will be small enouch to fit into discv5 limit.
## This is neccesarry as contentKeysLimit (64) is sometimes to big, and even
## half of this can be too much to fit into discv5 limits.
let maxTalkReqPayload = maxDiscv5PacketSize - getTalkReqOverhead(int(protocolIdLen))
# To calculate how much bytes, `n` content keys of size `maxKeySize` will take
# we can use following equation:
# bytes = (n * (maxKeySize + perContentKeyOverhead)) + offerMessageOverhead
# to calculate maximal number of keys which will given space this can be
# transformed to:
# n = trunc((bytes - offerMessageOverhead) / (maxKeySize + perContentKeyOverhead))
return ((maxTalkReqPayload - 5) div (int(maxKeySize) + 4))
proc offer(
p: PortalProtocol, o: OfferRequest
): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} =
## Offer triggers offer-accept interaction with one peer
## Whole flow has two phases:
## 1. Come to an agreement on what content to transfer, by using offer and
## accept messages.
## 2. Open uTP stream from content provider to content receiver and transfer
## agreed content.
## There are two types of possible offer requests:
## Direct - when caller provides content to transfer. This way, content is
## guaranteed to be transferred as it stays in memory until whole transfer
## is completed.
## Database - when caller provides keys of content to be transferred. This
## way content is provided from database just before it is transferred through
## uTP socket. This is useful when there is a lot of content to be transferred
## to many peers, and keeping it all in memory could exhaust node resources.
## Main drawback is that content may be deleted from the node database
## by the cleanup process before it will be transferred, so this way does not
## guarantee content transfer.
let contentKeys = getContentKeys(o)
logScope:
node = o.dst
contentKeys
debug "Offering content"
portal_content_keys_offered.observe(
contentKeys.len().int64, labelValues = [$p.protocolId]
)
let acceptMessageResponse = await p.offerImpl(o.dst, contentKeys)
if acceptMessageResponse.isOk():
let m = acceptMessageResponse.get()
let contentKeysLen =
case o.kind
of Direct:
o.contentList.len()
of Database:
o.contentKeys.len()
if m.contentKeys.len() != contentKeysLen:
# TODO:
# When there is such system, the peer should get scored negatively here.
error "Accepted content key bitlist has invalid size"
return err("Accepted content key bitlist has invalid size")
let acceptedKeysAmount = m.contentKeys.countOnes()
portal_content_keys_accepted.observe(
acceptedKeysAmount.int64, labelValues = [$p.protocolId]
)
if acceptedKeysAmount == 0:
debug "No content accepted"
# Don't open an uTP stream if no content was requested
return ok(m.contentKeys)
let nodeAddress = NodeAddress.init(o.dst)
if nodeAddress.isNone():
# It should not happen as we are already after succesfull talkreq/talkresp
# cycle
error "Trying to connect to node with unknown address", id = o.dst.id
return err("Trying to connect to node with unknown address")
let socket = (
await p.stream.connectTo(
nodeAddress.unsafeGet(), uint16.fromBytesBE(m.connectionId)
)
).valueOr:
debug "uTP connection error for offer content", error
return err("Error connecting uTP socket")
template lenu32(x: untyped): untyped =
uint32(len(x))
case o.kind
of Direct:
for i, b in m.contentKeys:
if b:
let content = o.contentList[i].content
# TODO: stop using faststreams for this
var output = memoryOutput()
try:
output.write(toBytes(content.lenu32, Leb128).toOpenArray())
output.write(content)
except IOError as e:
# This should not happen in case of in-memory streams
raiseAssert e.msg
let dataWritten = (await socket.write(output.getOutput)).valueOr:
debug "Error writing requested data", error
# No point in trying to continue writing data
socket.close()
return err("Error writing requested data")
trace "Offered content item send", dataWritten = dataWritten
of Database:
for i, b in m.contentKeys:
if b:
let
contentKey = o.contentKeys[i]
contentIdResult = p.toContentId(contentKey)
if contentIdResult.isOk():
let
contentId = contentIdResult.get()
contentResult = p.dbGet(contentKey, contentId)
var output = memoryOutput()
if contentResult.isOk():
let content = contentResult.get()
try:
output.write(toBytes(content.lenu32, Leb128).toOpenArray())
output.write(content)
except IOError as e:
# This should not happen in case of in-memory streams
raiseAssert e.msg
else:
try:
# When data turns out missing, add a 0 size varint
output.write(toBytes(0'u8, Leb128).toOpenArray())
except IOError as e:
raiseAssert e.msg
let dataWritten = (await socket.write(output.getOutput)).valueOr:
debug "Error writing requested data", error
# No point in trying to continue writing data
socket.close()
return err("Error writing requested data")
trace "Offered content item send", dataWritten = dataWritten
await socket.closeWait()
debug "Content successfully offered"
return ok(m.contentKeys)
else:
warn "Offer failed due to accept request failure ",
error = acceptMessageResponse.error
return err("No accept response")
proc offer*(
p: PortalProtocol, dst: Node, contentKeys: ContentKeysList
): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} =
let req = OfferRequest(dst: dst, kind: Database, contentKeys: contentKeys)
return await p.offer(req)
proc offer*(
p: PortalProtocol, dst: Node, content: seq[ContentKV]
): Future[PortalResult[ContentKeysBitList]] {.async: (raises: [CancelledError]).} =
if len(content) > contentKeysLimit:
return err("Cannot offer more than 64 content items")
if len(content) == 0:
return err("Cannot offer empty content list")
let contentList = List[ContentKV, contentKeysLimit].init(content)
let req = OfferRequest(dst: dst, kind: Direct, contentList: contentList)
return await p.offer(req)
proc offerWorker(p: PortalProtocol) {.async: (raises: [CancelledError]).} =
while true:
let req = await p.offerQueue.popFirst()
let res = await p.offer(req)
if res.isOk():
portal_gossip_offers_successful.inc(labelValues = [$p.protocolId])
else:
portal_gossip_offers_failed.inc(labelValues = [$p.protocolId])
proc offerQueueEmpty*(p: PortalProtocol): bool =
p.offerQueue.empty()
proc lookupWorker(
p: PortalProtocol, dst: Node, target: NodeId
): Future[seq[Node]] {.async: (raises: [CancelledError]).} =
let distances = lookupDistances(target, dst.id)
let nodesMessage = await p.findNodes(dst, distances)
if nodesMessage.isOk():
let nodes = nodesMessage.get()
# Attempt to add all nodes discovered
for n in nodes:
discard p.addNode(n)
return nodes
else:
return @[]
proc lookup*(
p: PortalProtocol, target: NodeId
): Future[seq[Node]] {.async: (raises: [CancelledError]).} =
## Perform a lookup for the given target, return the closest n nodes to the
## target. Maximum value for n is `BUCKET_SIZE`.
# `closestNodes` holds the k closest nodes to target found, sorted by distance
# Unvalidated nodes are used for requests as a form of validation.
var closestNodes = p.routingTable.neighbours(target, BUCKET_SIZE, seenOnly = false)
var asked, seen = HashSet[NodeId]()
asked.incl(p.localNode.id) # No need to ask our own node
seen.incl(p.localNode.id) # No need to discover our own node
for node in closestNodes:
seen.incl(node.id)
var pendingQueries = newSeqOfCap[Future[seq[Node]].Raising([CancelledError])](alpha)
var requestAmount = 0'i64
while true:
var i = 0
# Doing `alpha` amount of requests at once as long as closer non queried
# nodes are discovered.
while i < closestNodes.len and pendingQueries.len < alpha:
let n = closestNodes[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.lookupWorker(n, target))
requestAmount.inc()
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query =
try:
await one(pendingQueries)
except ValueError:
raiseAssert("pendingQueries should not have been empty")
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let nodes = await query
# TODO: Remove node on timed-out query?
for n in nodes:
if not seen.containsOrIncl(n.id):
# If it wasn't seen before, insert node while remaining sorted
closestNodes.insert(
n,
closestNodes.lowerBound(
n,
proc(x: Node, n: Node): int =
cmp(p.distance(x.id, target), p.distance(n.id, target)),
),
)
if closestNodes.len > BUCKET_SIZE:
closestNodes.del(closestNodes.high())
portal_lookup_node_requests.observe(requestAmount, labelValues = [$p.protocolId])
p.lastLookup = now(chronos.Moment)
return closestNodes
proc triggerPoke*(
p: PortalProtocol,
nodes: seq[Node],
contentKey: ContentKeyByteList,
content: seq[byte],
) =
## In order to properly test gossip mechanisms (e.g. in Portal Hive),
## we need the option to turn off the POKE functionality as it influences
## how data moves around the network.
if p.disablePoke:
return
## Triggers asynchronous offer-accept interaction to provided nodes.
## Provided content should be in range of provided nodes.
for node in nodes:
if not p.offerQueue.full():
try:
let
contentKV = ContentKV(contentKey: contentKey, content: content)
list = List[ContentKV, contentKeysLimit].init(@[contentKV])
req = OfferRequest(dst: node, kind: Direct, contentList: list)
p.offerQueue.putNoWait(req)
portal_poke_offers.inc(labelValues = [$p.protocolId])
except AsyncQueueFullError as e:
# Should not occur as full() check is done.
raiseAssert(e.msg)
else:
# Offer queue is full, do not start more offer-accept interactions
return
# TODO ContentLookup and Lookup look almost exactly the same, also lookups in other
# networks will probably be very similar. Extract lookup function to separate module
# and make it more generaic
proc contentLookup*(
p: PortalProtocol, target: ContentKeyByteList, targetId: UInt256
): Future[Opt[ContentLookupResult]] {.async: (raises: [CancelledError]).} =
## Perform a lookup for the given target, return the closest n nodes to the
## target. Maximum value for n is `BUCKET_SIZE`.
# `closestNodes` holds the k closest nodes to target found, sorted by distance
# Unvalidated nodes are used for requests as a form of validation.
var closestNodes = p.routingTable.neighbours(targetId, BUCKET_SIZE, seenOnly = false)
# Shuffling the order of the nodes in order to not always hit the same node
# first for the same request.
p.baseProtocol.rng[].shuffle(closestNodes)
var asked, seen = HashSet[NodeId]()
asked.incl(p.localNode.id) # No need to ask our own node
seen.incl(p.localNode.id) # No need to discover our own node
for node in closestNodes:
seen.incl(node.id)
var pendingQueries =
newSeqOfCap[Future[PortalResult[FoundContent]].Raising([CancelledError])](alpha)
var requestAmount = 0'i64
var nodesWithoutContent: seq[Node] = newSeq[Node]()
while true:
var i = 0
# Doing `alpha` amount of requests at once as long as closer non queried
# nodes are discovered.
while i < closestNodes.len and pendingQueries.len < alpha:
let n = closestNodes[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.findContent(n, target))
requestAmount.inc()
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query =
try:
await one(pendingQueries)
except ValueError:
raiseAssert("pendingQueries should not have been empty")
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let contentResult = await query
if contentResult.isOk():
let content = contentResult.get()
case content.kind
of Nodes:
let maybeRadius = p.radiusCache.get(content.src.id)
if maybeRadius.isSome() and
p.inRange(content.src.id, maybeRadius.unsafeGet(), targetId):
# Only return nodes which may be interested in content.
# No need to check for duplicates in nodesWithoutContent
# as requests are never made two times to the same node.
nodesWithoutContent.add(content.src)
for n in content.nodes:
if not seen.containsOrIncl(n.id):
discard p.addNode(n)
# If it wasn't seen before, insert node while remaining sorted
closestNodes.insert(
n,
closestNodes.lowerBound(
n,
proc(x: Node, n: Node): int =
cmp(p.distance(x.id, targetId), p.distance(n.id, targetId)),
),
)
if closestNodes.len > BUCKET_SIZE:
closestNodes.del(closestNodes.high())
of Content:
# cancel any pending queries as the content has been found
for f in pendingQueries:
f.cancelSoon()
portal_lookup_content_requests.observe(
requestAmount, labelValues = [$p.protocolId]
)
return Opt.some(
ContentLookupResult.init(
content.content, content.utpTransfer, nodesWithoutContent
)
)
else:
# TODO: Should we do something with the node that failed responding our
# query?
discard
portal_lookup_content_failures.inc(labelValues = [$p.protocolId])
return Opt.none(ContentLookupResult)
proc traceContentLookup*(
p: PortalProtocol, target: ContentKeyByteList, targetId: UInt256
): Future[TraceContentLookupResult] {.async: (raises: [CancelledError]).} =
## Perform a lookup for the given target, return the closest n nodes to the
## target. Maximum value for n is `BUCKET_SIZE`.
# `closestNodes` holds the k closest nodes to target found, sorted by distance
# Unvalidated nodes are used for requests as a form of validation.
var closestNodes = p.routingTable.neighbours(targetId, BUCKET_SIZE, seenOnly = false)
# Shuffling the order of the nodes in order to not always hit the same node
# first for the same request.
p.baseProtocol.rng[].shuffle(closestNodes)
let ts = now(chronos.Moment)
var responses = Table[string, TraceResponse]()
var metadata = Table[string, NodeMetadata]()
var asked, seen = HashSet[NodeId]()
asked.incl(p.localNode.id) # No need to ask our own node
seen.incl(p.localNode.id) # No need to discover our own node
for node in closestNodes:
seen.incl(node.id)
# Local node should be part of the responses
responses["0x" & $p.localNode.id] =
TraceResponse(durationMs: 0, respondedWith: seen.toSeq())
metadata["0x" & $p.localNode.id] = NodeMetadata(
enr: p.localNode.record, distance: p.distance(p.localNode.id, targetId)
)
# We should also have metadata for all the closes nodes
# in order to be able to show cancelled requests
for cn in closestNodes:
metadata["0x" & $cn.id] =
NodeMetadata(enr: cn.record, distance: p.distance(cn.id, targetId))
var pendingQueries =
newSeqOfCap[Future[PortalResult[FoundContent]].Raising([CancelledError])](alpha)
var pendingNodes = newSeq[Node]()
var requestAmount = 0'i64
var nodesWithoutContent: seq[Node] = newSeq[Node]()
while true:
var i = 0
# Doing `alpha` amount of requests at once as long as closer non queried
# nodes are discovered.
while i < closestNodes.len and pendingQueries.len < alpha:
let n = closestNodes[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.findContent(n, target))
pendingNodes.add(n)
requestAmount.inc()
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query =
try:
await one(pendingQueries)
except ValueError:
raiseAssert("pendingQueries should not have been empty")
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
pendingNodes.del(index)
else:
error "Resulting query should have been in the pending queries"
let contentResult = await query
if contentResult.isOk():
let content = contentResult.get()
case content.kind
of Nodes:
let duration = chronos.milliseconds(now(chronos.Moment) - ts)
let maybeRadius = p.radiusCache.get(content.src.id)
if maybeRadius.isSome() and
p.inRange(content.src.id, maybeRadius.unsafeGet(), targetId):
# Only return nodes which may be interested in content.
# No need to check for duplicates in nodesWithoutContent
# as requests are never made two times to the same node.
nodesWithoutContent.add(content.src)
var respondedWith = newSeq[NodeId]()
for n in content.nodes:
let dist = p.distance(n.id, targetId)
metadata["0x" & $n.id] = NodeMetadata(enr: n.record, distance: dist)
respondedWith.add(n.id)
if not seen.containsOrIncl(n.id):
discard p.addNode(n)
# If it wasn't seen before, insert node while remaining sorted
closestNodes.insert(
n,
closestNodes.lowerBound(
n,
proc(x: Node, n: Node): int =
cmp(p.distance(x.id, targetId), dist),
),
)
if closestNodes.len > BUCKET_SIZE:
closestNodes.del(closestNodes.high())
let distance = p.distance(content.src.id, targetId)
responses["0x" & $content.src.id] =
TraceResponse(durationMs: duration, respondedWith: respondedWith)
metadata["0x" & $content.src.id] =
NodeMetadata(enr: content.src.record, distance: distance)
of Content:
let duration = chronos.milliseconds(now(chronos.Moment) - ts)
# cancel any pending queries as the content has been found
for f in pendingQueries:
f.cancelSoon()
portal_lookup_content_requests.observe(
requestAmount, labelValues = [$p.protocolId]
)
let distance = p.distance(content.src.id, targetId)
responses["0x" & $content.src.id] =
TraceResponse(durationMs: duration, respondedWith: newSeq[NodeId]())
metadata["0x" & $content.src.id] =
NodeMetadata(enr: content.src.record, distance: distance)
var pendingNodeIds = newSeq[NodeId]()
for pn in pendingNodes:
pendingNodeIds.add(pn.id)
metadata["0x" & $pn.id] =
NodeMetadata(enr: pn.record, distance: p.distance(pn.id, targetId))
return TraceContentLookupResult(
content: Opt.some(content.content),
utpTransfer: content.utpTransfer,
trace: TraceObject(
origin: p.localNode.id,
targetId: targetId,
receivedFrom: Opt.some(content.src.id),
responses: responses,
metadata: metadata,
cancelled: pendingNodeIds,
startedAtMs: chronos.epochNanoSeconds(ts) div 1_000_000,
# nanoseconds to milliseconds
),
)
else:
# TODO: Should we do something with the node that failed responding our
# query?
discard
portal_lookup_content_failures.inc(labelValues = [$p.protocolId])
return TraceContentLookupResult(
content: Opt.none(seq[byte]),
utpTransfer: false,
trace: TraceObject(
origin: p.localNode.id,
targetId: targetId,
receivedFrom: Opt.none(NodeId),
responses: responses,
metadata: metadata,
cancelled: newSeq[NodeId](),
startedAtMs: chronos.epochNanoSeconds(ts) div 1_000_000,
# nanoseconds to milliseconds
),
)
proc query*(
p: PortalProtocol, target: NodeId, k = BUCKET_SIZE
): Future[seq[Node]] {.async: (raises: [CancelledError]).} =
## Query k nodes for the given target, returns all nodes found, including the
## nodes queried.
##
## This will take k nodes from the routing table closest to target and
## query them for nodes closest to target. If there are less than k nodes in
## the routing table, nodes returned by the first queries will be used.
var queryBuffer = p.routingTable.neighbours(target, k, seenOnly = false)
var asked, seen = HashSet[NodeId]()
asked.incl(p.localNode.id) # No need to ask our own node
seen.incl(p.localNode.id) # No need to discover our own node
for node in queryBuffer:
seen.incl(node.id)
var pendingQueries = newSeqOfCap[Future[seq[Node]].Raising([CancelledError])](alpha)
while true:
var i = 0
while i < min(queryBuffer.len, k) and pendingQueries.len < alpha:
let n = queryBuffer[i]
if not asked.containsOrIncl(n.id):
pendingQueries.add(p.lookupWorker(n, target))
inc i
trace "Pending lookup queries", total = pendingQueries.len
if pendingQueries.len == 0:
break
let query =
try:
await one(pendingQueries)
except ValueError:
raiseAssert("pendingQueries should not have been empty")
trace "Got lookup query response"
let index = pendingQueries.find(query)
if index != -1:
pendingQueries.del(index)
else:
error "Resulting query should have been in the pending queries"
let nodes = await query
# TODO: Remove node on timed-out query?
for n in nodes:
if not seen.containsOrIncl(n.id):
queryBuffer.add(n)
p.lastLookup = now(chronos.Moment)
return queryBuffer
proc queryRandom*(
p: PortalProtocol
): Future[seq[Node]] {.async: (raw: true, raises: [CancelledError]).} =
## Perform a query for a random target, return all nodes discovered.
p.query(NodeId.random(p.baseProtocol.rng[]))
proc getNClosestNodesWithRadius*(
p: PortalProtocol, targetId: NodeId, n: int, seenOnly: bool = false
): seq[(Node, UInt256)] =
let closestLocalNodes =
p.routingTable.neighbours(targetId, k = n, seenOnly = seenOnly)
var nodesWithRadiuses: seq[(Node, UInt256)]
for node in closestLocalNodes:
let radius = p.radiusCache.get(node.id)
if radius.isSome():
nodesWithRadiuses.add((node, radius.unsafeGet()))
return nodesWithRadiuses
proc neighborhoodGossip*(
p: PortalProtocol,
srcNodeId: Opt[NodeId],
contentKeys: ContentKeysList,
content: seq[seq[byte]],
): Future[int] {.async: (raises: [CancelledError]).} =
## Run neighborhood gossip for provided content.
## Returns the number of peers to which content was attempted to be gossiped.
if content.len() == 0:
return 0
var contentList = List[ContentKV, contentKeysLimit].init(@[])
for i, contentItem in content:
let contentKV = ContentKV(contentKey: contentKeys[i], content: contentItem)
discard contentList.add(contentKV)
# Just taking the first content item as target id.
# TODO: come up with something better?
let contentId = p.toContentId(contentList[0].contentKey).valueOr:
return 0
# For selecting the closest nodes to whom to gossip the content a mixed
# approach is taken:
# 1. Select the closest neighbours in the routing table
# 2. Check if the radius is known for these these nodes and whether they are
# in range of the content to be offered.
# 3. If more than n (= maxGossipNodes) nodes are in range, offer these nodes
# the content (maxed out at n).
# 4. If less than n nodes are in range, do a node lookup, and offer the nodes
# returned from the lookup the content (max nodes set at 8)
#
# This should give a bigger rate of success and avoid the data being stopped
# in its propagation than when looking only for nodes in the own routing
# table, but at the same time avoid unnecessary node lookups.
# It might still cause issues in data getting propagated in a wider id range.
let closestLocalNodes =
p.routingTable.neighbours(NodeId(contentId), k = 16, seenOnly = true)
var gossipNodes: seq[Node]
for node in closestLocalNodes:
let radius = p.radiusCache.get(node.id)
if radius.isSome():
if p.inRange(node.id, radius.unsafeGet(), contentId):
if srcNodeId.isNone:
gossipNodes.add(node)
elif node.id != srcNodeId.get():
gossipNodes.add(node)
if gossipNodes.len >= p.maxGossipNodes: # use local nodes for gossip
portal_gossip_without_lookup.inc(labelValues = [$p.protocolId])
let numberOfGossipedNodes = min(gossipNodes.len, p.maxGossipNodes)
for node in gossipNodes[0 ..< numberOfGossipedNodes]:
let req = OfferRequest(dst: node, kind: Direct, contentList: contentList)
await p.offerQueue.addLast(req)
return numberOfGossipedNodes
else: # use looked up nodes for gossip
portal_gossip_with_lookup.inc(labelValues = [$p.protocolId])
let closestNodes = await p.lookup(NodeId(contentId))
let numberOfGossipedNodes = min(closestNodes.len, p.maxGossipNodes)
for node in closestNodes[0 ..< numberOfGossipedNodes]:
# Note: opportunistically not checking if the radius of the node is known
# and thus if the node is in radius with the content. Reason is, these
# should really be the closest nodes in the DHT, and thus are most likely
# going to be in range of the requested content.
let req = OfferRequest(dst: node, kind: Direct, contentList: contentList)
await p.offerQueue.addLast(req)
return numberOfGossipedNodes
proc neighborhoodGossipDiscardPeers*(
p: PortalProtocol,
srcNodeId: Opt[NodeId],
contentKeys: ContentKeysList,
content: seq[seq[byte]],
): Future[void] {.async: (raises: [CancelledError]).} =
discard await p.neighborhoodGossip(srcNodeId, contentKeys, content)
proc randomGossip*(
p: PortalProtocol,
srcNodeId: Opt[NodeId],
contentKeys: ContentKeysList,
content: seq[seq[byte]],
): Future[int] {.async: (raises: [CancelledError]).} =
## Run random gossip for provided content.
## Returns the number of peers to which content was attempted to be gossiped.
if content.len() == 0:
return 0
var contentList = List[ContentKV, contentKeysLimit].init(@[])
for i, contentItem in content:
let contentKV = ContentKV(contentKey: contentKeys[i], content: contentItem)
discard contentList.add(contentKV)
const maxGossipNodes = 4
let nodes = p.routingTable.randomNodes(maxGossipNodes)
for node in nodes[0 ..< nodes.len()]:
let req = OfferRequest(dst: node, kind: Direct, contentList: contentList)
await p.offerQueue.addLast(req)
return nodes.len()
proc randomGossipDiscardPeers*(
p: PortalProtocol,
srcNodeId: Opt[NodeId],
contentKeys: ContentKeysList,
content: seq[seq[byte]],
): Future[void] {.async: (raises: [CancelledError]).} =
discard await p.randomGossip(srcNodeId, contentKeys, content)
proc storeContent*(
p: PortalProtocol,
contentKey: ContentKeyByteList,
contentId: ContentId,
content: seq[byte],
): bool {.discardable.} =
# Always re-check that the key is still in the node range to make sure only
# content in range is stored.
if p.inRange(contentId):
doAssert(p.dbPut != nil)
p.dbPut(contentKey, contentId, content)
true
else:
false
proc seedTable*(p: PortalProtocol) =
## Seed the table with specifically provided Portal bootstrap nodes. These are
## nodes that must support the wire protocol for the specific content network.
# Note: We allow replacing the bootstrap nodes in the routing table as it is
# possible that some of these are not supporting the specific portal network.
# Other note: One could also pick nodes from the discv5 routing table to
# bootstrap the portal networks, however it would require a flag in the ENR to
# be added and there might be none in the routing table due to low amount of
# Portal nodes versus other nodes.
logScope:
protocolId = p.protocolId
for record in p.bootstrapRecords:
if p.addNode(record):
debug "Added bootstrap node", uri = toURI(record), protocolId = p.protocolId
else:
error "Bootstrap node could not be added",
uri = toURI(record), protocolId = p.protocolId
proc populateTable(p: PortalProtocol) {.async: (raises: [CancelledError]).} =
## Do a set of initial lookups to quickly populate the table.
# start with a self target query (neighbour nodes)
logScope:
protocolId = p.protocolId
let selfQuery = await p.query(p.localNode.id)
trace "Discovered nodes in self target query", nodes = selfQuery.len
for i in 0 ..< initialLookups:
let randomQuery = await p.queryRandom()
trace "Discovered nodes in random target query", nodes = randomQuery.len
debug "Total nodes in routing table after populate", total = p.routingTable.len()
proc revalidateNode*(p: PortalProtocol, n: Node) {.async: (raises: [CancelledError]).} =
let pong = await p.ping(n)
if pong.isOk():
let res = pong.get()
if res.enrSeq > n.record.seqNum:
# Request new ENR
let nodesMessage = await p.findNodes(n, @[0'u16])
if nodesMessage.isOk():
let nodes = nodesMessage.get()
if nodes.len > 0: # Normally a node should only return 1 record actually
discard p.addNode(nodes[0])
proc getNodeForRevalidation(p: PortalProtocol): Opt[Node] =
let node = p.routingTable.nodeToRevalidate()
if node.isNil:
# This should not occur except for when the RT is empty
return Opt.none(Node)
let now = now(chronos.Moment)
let timestamp = p.pingTimings.getOrDefault(node.id, Moment.init(0'i64, Second))
if (timestamp + revalidationTimeout) < now:
Opt.some(node)
else:
Opt.none(Node)
proc revalidateLoop(p: PortalProtocol) {.async: (raises: []).} =
## Loop which revalidates the nodes in the routing table by sending the ping
## message.
try:
while true:
await sleepAsync(milliseconds(p.baseProtocol.rng[].rand(revalidateMax)))
let n = getNodeForRevalidation(p)
if n.isSome:
asyncSpawn p.revalidateNode(n.get())
except CancelledError:
trace "revalidateLoop canceled"
proc refreshLoop(p: PortalProtocol) {.async: (raises: []).} =
## Loop that refreshes the routing table by starting a random query in case
## no queries were done since `refreshInterval` or more.
## It also refreshes the majority address voted for via pong responses.
logScope:
protocolId = p.protocolId
try:
while true:
# TODO: It would be nicer and more secure if this was event based and/or
# steered from the routing table.
while p.routingTable.len() == 0:
p.seedTable()
await p.populateTable()
await sleepAsync(5.seconds)
let currentTime = now(chronos.Moment)
if currentTime > (p.lastLookup + refreshInterval):
let randomQuery = await p.queryRandom()
trace "Discovered nodes in random target query", nodes = randomQuery.len
debug "Total nodes in routing table", total = p.routingTable.len()
await sleepAsync(refreshInterval)
except CancelledError:
trace "refreshLoop canceled"
proc start*(p: PortalProtocol) =
p.refreshLoop = refreshLoop(p)
p.revalidateLoop = revalidateLoop(p)
for i in 0 ..< concurrentOffers:
p.offerWorkers.add(offerWorker(p))
proc stop*(p: PortalProtocol) {.async: (raises: []).} =
var futures: seq[Future[void]]
if not p.revalidateLoop.isNil():
futures.add(p.revalidateLoop.cancelAndWait())
if not p.refreshLoop.isNil():
futures.add(p.refreshLoop.cancelAndWait())
for worker in p.offerWorkers:
futures.add(worker.cancelAndWait())
await noCancel(allFutures(futures))
p.revalidateLoop = nil
p.refreshLoop = nil
p.offerWorkers = @[]
proc resolve*(
p: PortalProtocol, id: NodeId
): Future[Opt[Node]] {.async: (raises: [CancelledError]).} =
## Resolve a `Node` based on provided `NodeId`.
##
## This will first look in the own routing table. If the node is known, it
## will try to contact if for newer information. If node is not known or it
## does not reply, a lookup is done to see if it can find a (newer) record of
## the node on the network.
if id == p.localNode.id:
return Opt.some(p.localNode)
let node = p.getNode(id)
if node.isSome():
let nodesMessage = await p.findNodes(node.get(), @[0'u16])
# TODO: Handle failures better. E.g. stop on different failures than timeout
if nodesMessage.isOk() and nodesMessage[].len > 0:
return Opt.some(nodesMessage[][0])
let discovered = await p.lookup(id)
for n in discovered:
if n.id == id:
if node.isSome() and node.get().record.seqNum >= n.record.seqNum:
return node
else:
return Opt.some(n)
return node
proc resolveWithRadius*(
p: PortalProtocol, id: NodeId
): Future[Opt[(Node, UInt256)]] {.async: (raises: [CancelledError]).} =
## Resolve a `Node` based on provided `NodeId`, also try to establish what
## is known radius of found node.
##
## This will first look in the own routing table. If the node is known, it
## will try to contact if for newer information. If node is not known or it
## does not reply, a lookup is done to see if it can find a (newer) record of
## the node on the network.
##
## If node is found, radius will be first checked in radius cache, it radius
## is not known node will be pinged to establish what is its current radius
##
let n = await p.resolve(id)
if n.isNone():
return Opt.none((Node, UInt256))
let node = n.unsafeGet()
let r = p.radiusCache.get(id)
if r.isSome():
return Opt.some((node, r.unsafeGet()))
let pongResult = await p.ping(node)
if pongResult.isOk():
let maybeRadius = p.radiusCache.get(id)
# After successful ping radius should already be in cache, but for the
# unlikely case that it is not, check it just to be sure.
# TODO: refactor ping to return node radius.
if maybeRadius.isNone():
return Opt.none((Node, UInt256))
else:
return Opt.some((node, maybeRadius.unsafeGet()))
else:
return Opt.none((Node, UInt256))