mirror of
https://github.com/status-im/nimbus-eth1.git
synced 2025-01-17 07:41:46 +00:00
188d689d9d
When `nimbus import` runs, we end up with a database without MPT roots leading to long startup times the first time one is needed. Computing the state root is slow because the on-disk order based on VertexID sorting does not match the trie traversal order and therefore makes lookups inefficent. Here we introduce a helper that speeds up this computation by traversing the trie in on-disk order and computing the trie hashes bottom up instead - even though this leads to some redundant reads of nodes that we cannot yet compute, it's still a net win as leaves and "bottom" branches make up the majority of the database. This PR also addresses a few other sources of inefficiency largely due to the separation of AriKey and AriVtx into their own column families. Each column family is its own LSM tree that produces hundreds of SST filtes - with a limit of 512 open files, rocksdb must keep closing and opening files which leads to expensive metadata reads during random access. When rocksdb makes a lookup, it has to read several layers of files for each lookup. Ribbon filters to skip over files that don't have the requested data but when these filters are not in memory, reading them is slow - this happens in two cases: when opening a file and when the filter has been evicted from the LRU cache. Addressing the open file limit solves one source of inefficiency, but we must also increase the block cache size to deal with this problem. * rocksdb.max_open_files increased to 2048 * per-file size limits increased so that fewer files are created * WAL size increased to avoid partial flushes which lead to small files * rocksdb block cache increased All these increases of course lead to increased memory usage, but at least performance is acceptable - in the future, we'll need to explore options such as joining AriVtx and AriKey and/or reducing the row count (by grouping branch layers under a single vertexid). With this PR, the mainnet state root can be computed in ~8 hours (down from 2-3 days) - not great, but still better. Further, we write all keys to the database, also those that are less than 32 bytes - because the mpt path is part of the input, it is very rare that we actually hit a key like this (about 200k such entries on mainnet), so the code complexity is not worth the benefit really, in the current database layout / design.
380 lines
11 KiB
Nim
380 lines
11 KiB
Nim
# nimbus-eth1
|
|
# Copyright (c) 2023-2024 Status Research & Development GmbH
|
|
# Licensed under either of
|
|
# * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or
|
|
# http://www.apache.org/licenses/LICENSE-2.0)
|
|
# * MIT license ([LICENSE-MIT](LICENSE-MIT) or
|
|
# http://opensource.org/licenses/MIT)
|
|
# at your option. This file may not be copied, modified, or distributed
|
|
# except according to those terms.
|
|
|
|
{.push raises: [].}
|
|
|
|
import
|
|
results,
|
|
stew/[arrayops, endians2],
|
|
./aristo_desc
|
|
|
|
export aristo_desc, results
|
|
|
|
# Allocation-free version short big-endian encoding that skips the leading
|
|
# zeroes
|
|
type
|
|
SbeBuf*[I] = object
|
|
buf*: array[sizeof(I), byte]
|
|
len*: byte
|
|
|
|
RVidBuf* = object
|
|
buf*: array[sizeof(SbeBuf[VertexID]) * 2, byte]
|
|
len*: byte
|
|
|
|
func significantBytesBE(val: openArray[byte]): byte =
|
|
for i in 0 ..< val.len:
|
|
if val[i] != 0:
|
|
return byte(val.len - i)
|
|
return 1
|
|
|
|
func blobify*(v: VertexID|uint64): SbeBuf[typeof(v)] =
|
|
let b = v.uint64.toBytesBE()
|
|
SbeBuf[typeof(v)](buf: b, len: significantBytesBE(b))
|
|
|
|
func blobify*(v: StUint): SbeBuf[typeof(v)] =
|
|
let b = v.toBytesBE()
|
|
SbeBuf[typeof(v)](buf: b, len: significantBytesBE(b))
|
|
|
|
template data*(v: SbeBuf): openArray[byte] =
|
|
let vv = v
|
|
vv.buf.toOpenArray(vv.buf.len - int(vv.len), vv.buf.high)
|
|
|
|
|
|
func blobify*(rvid: RootedVertexID): RVidBuf =
|
|
# Length-prefixed root encoding creates a unique and common prefix for all
|
|
# verticies sharing the same root
|
|
# TODO evaluate an encoding that colocates short roots (like VertexID(1)) with
|
|
# the length
|
|
let root = rvid.root.blobify()
|
|
result.buf[0] = root.len
|
|
assign(result.buf.toOpenArray(1, root.len), root.data())
|
|
|
|
if rvid.root == rvid.vid:
|
|
result.len = root.len + 1
|
|
else:
|
|
# We can derive the length of the `vid` from the total length
|
|
let vid = rvid.vid.blobify()
|
|
assign(result.buf.toOpenArray(root.len + 1, root.len + vid.len), vid.data())
|
|
result.len = root.len + 1 + vid.len
|
|
|
|
proc deblobify*[T: uint64|VertexID](data: openArray[byte], _: type T): Result[T,AristoError] =
|
|
if data.len < 1 or data.len > 8:
|
|
return err(Deblob64LenUnsupported)
|
|
|
|
var tmp: array[8, byte]
|
|
discard tmp.toOpenArray(8 - data.len, 7).copyFrom(data)
|
|
|
|
ok T(uint64.fromBytesBE(tmp))
|
|
|
|
proc deblobify*(data: openArray[byte], _: type UInt256): Result[UInt256,AristoError] =
|
|
if data.len < 1 or data.len > 32:
|
|
return err(Deblob256LenUnsupported)
|
|
|
|
ok UInt256.fromBytesBE(data)
|
|
|
|
func deblobify*(data: openArray[byte], T: type RootedVertexID): Result[T, AristoError] =
|
|
let rlen = int(data[0])
|
|
if data.len < 2:
|
|
return err(DeblobRVidLenUnsupported)
|
|
|
|
if data.len < rlen + 1:
|
|
return err(DeblobRVidLenUnsupported)
|
|
|
|
let
|
|
root = ?deblobify(data.toOpenArray(1, rlen), VertexID)
|
|
vid = if data.len > rlen + 1:
|
|
?deblobify(data.toOpenArray(rlen + 1, data.high()), VertexID)
|
|
else:
|
|
root
|
|
ok (root, vid)
|
|
|
|
template data*(v: RVidBuf): openArray[byte] =
|
|
let vv = v
|
|
vv.buf.toOpenArray(0, vv.len - 1)
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Private helper
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc load64(data: openArray[byte]; start: var int, len: int): Result[uint64,AristoError] =
|
|
if data.len < start + len:
|
|
return err(Deblob256LenUnsupported)
|
|
|
|
let val = ?deblobify(data.toOpenArray(start, start + len - 1), uint64)
|
|
start += len
|
|
ok val
|
|
|
|
proc load256(data: openArray[byte]; start: var int, len: int): Result[UInt256,AristoError] =
|
|
if data.len < start + len:
|
|
return err(Deblob256LenUnsupported)
|
|
let val = ?deblobify(data.toOpenArray(start, start + len - 1), UInt256)
|
|
start += len
|
|
ok val
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# Public functions
|
|
# ------------------------------------------------------------------------------
|
|
|
|
proc blobifyTo*(pyl: LeafPayload, data: var seq[byte]) =
|
|
case pyl.pType
|
|
of RawData:
|
|
data &= pyl.rawBlob
|
|
data &= [0x10.byte]
|
|
|
|
of AccountData:
|
|
# `lens` holds `len-1` since `mask` filters out the zero-length case (which
|
|
# allows saving 1 bit per length)
|
|
var lens: uint16
|
|
var mask: byte
|
|
if 0 < pyl.account.nonce:
|
|
mask = mask or 0x01
|
|
let tmp = pyl.account.nonce.blobify()
|
|
lens += tmp.len - 1 # 3 bits
|
|
data &= tmp.data()
|
|
|
|
if 0 < pyl.account.balance:
|
|
mask = mask or 0x02
|
|
let tmp = pyl.account.balance.blobify()
|
|
lens += uint16(tmp.len - 1) shl 3 # 5 bits
|
|
data &= tmp.data()
|
|
|
|
if pyl.stoID.isValid:
|
|
mask = mask or 0x04
|
|
let tmp = pyl.stoID.vid.blobify()
|
|
lens += uint16(tmp.len - 1) shl 8 # 3 bits
|
|
data &= tmp.data()
|
|
|
|
if pyl.account.codeHash != EMPTY_CODE_HASH:
|
|
mask = mask or 0x08
|
|
data &= pyl.account.codeHash.data
|
|
|
|
data &= lens.toBytesBE()
|
|
data &= [mask]
|
|
of StoData:
|
|
data &= pyl.stoData.blobify().data
|
|
data &= [0x20.byte]
|
|
|
|
proc blobifyTo*(vtx: VertexRef; data: var seq[byte]): Result[void,AristoError] =
|
|
## This function serialises the vertex argument to a database record.
|
|
## Contrary to RLP based serialisation, these records aim to align on
|
|
## fixed byte boundaries.
|
|
## ::
|
|
## Branch:
|
|
## [VertexID, ..] -- list of up to 16 child vertices lookup keys
|
|
## seq[byte] -- hex encoded partial path (non-empty for extension nodes)
|
|
## uint64 -- lengths of each child vertex, each taking 4 bits
|
|
## 0x80 + xx -- marker(2) + pathSegmentLen(6)
|
|
##
|
|
## Leaf:
|
|
## seq[byte] -- opaque leaf data payload (might be zero length)
|
|
## seq[byte] -- hex encoded partial path (at least one byte)
|
|
## 0xc0 + yy -- marker(2) + partialPathLen(6)
|
|
##
|
|
## For a branch record, the bytes of the `access` array indicate the position
|
|
## of the Patricia Trie vertex reference. So the `vertexID` with index `n` has
|
|
## ::
|
|
## 8 * n * ((access shr (n * 4)) and 15)
|
|
##
|
|
if not vtx.isValid:
|
|
return err(BlobifyNilVertex)
|
|
case vtx.vType:
|
|
of Branch:
|
|
var
|
|
lens = 0u64
|
|
pos = data.len
|
|
for n in 0..15:
|
|
if vtx.bVid[n].isValid:
|
|
let tmp = vtx.bVid[n].blobify()
|
|
lens += uint64(tmp.len) shl (n * 4)
|
|
data &= tmp.data()
|
|
if data.len == pos:
|
|
return err(BlobifyBranchMissingRefs)
|
|
|
|
let
|
|
pSegm =
|
|
if vtx.pfx.len > 0:
|
|
vtx.pfx.toHexPrefix(isleaf = false)
|
|
else:
|
|
default(HexPrefixBuf)
|
|
psLen = pSegm.len.byte
|
|
if 33 < psLen:
|
|
return err(BlobifyExtPathOverflow)
|
|
|
|
data &= pSegm.data()
|
|
data &= lens.toBytesBE
|
|
data &= [0x80u8 or psLen]
|
|
|
|
of Leaf:
|
|
let
|
|
pSegm = vtx.pfx.toHexPrefix(isleaf = true)
|
|
psLen = pSegm.len.byte
|
|
if psLen == 0 or 33 < psLen:
|
|
return err(BlobifyLeafPathOverflow)
|
|
vtx.lData.blobifyTo(data)
|
|
data &= pSegm.data()
|
|
data &= [0xC0u8 or psLen]
|
|
|
|
ok()
|
|
|
|
proc blobify*(vtx: VertexRef): seq[byte] =
|
|
## Variant of `blobify()`
|
|
result = newSeqOfCap[byte](128)
|
|
if vtx.blobifyTo(result).isErr:
|
|
result.setLen(0) # blobify only fails on invalid verticies
|
|
|
|
proc blobifyTo*(lSst: SavedState; data: var seq[byte]): Result[void,AristoError] =
|
|
## Serialise a last saved state record
|
|
data.add lSst.key.data
|
|
data.add lSst.serial.toBytesBE
|
|
data.add @[0x7fu8]
|
|
ok()
|
|
|
|
proc blobify*(lSst: SavedState): Result[seq[byte],AristoError] =
|
|
## Variant of `blobify()`
|
|
var data: seq[byte]
|
|
? lSst.blobifyTo data
|
|
ok(move(data))
|
|
|
|
# -------------
|
|
proc deblobify(
|
|
data: openArray[byte];
|
|
pyl: var LeafPayload;
|
|
): Result[void,AristoError] =
|
|
if data.len == 0:
|
|
pyl = LeafPayload(pType: RawData)
|
|
return ok()
|
|
|
|
let mask = data[^1]
|
|
if (mask and 0x10) > 0: # unstructured payload
|
|
pyl = LeafPayload(pType: RawData, rawBlob: data[0 .. ^2])
|
|
return ok()
|
|
|
|
if (mask and 0x20) > 0: # Slot storage data
|
|
pyl = LeafPayload(
|
|
pType: StoData,
|
|
stoData: ?deblobify(data.toOpenArray(0, data.len - 2), UInt256))
|
|
return ok()
|
|
|
|
pyl = LeafPayload(pType: AccountData)
|
|
var
|
|
start = 0
|
|
lens = uint16.fromBytesBE(data.toOpenArray(data.len - 3, data.len - 2))
|
|
|
|
if (mask and 0x01) > 0:
|
|
let len = lens and 0b111
|
|
pyl.account.nonce = ? load64(data, start, int(len + 1))
|
|
|
|
if (mask and 0x02) > 0:
|
|
let len = (lens shr 3) and 0b11111
|
|
pyl.account.balance = ? load256(data, start, int(len + 1))
|
|
|
|
if (mask and 0x04) > 0:
|
|
let len = (lens shr 8) and 0b111
|
|
pyl.stoID = (true, VertexID(? load64(data, start, int(len + 1))))
|
|
|
|
if (mask and 0x08) > 0:
|
|
if data.len() < start + 32:
|
|
return err(DeblobCodeLenUnsupported)
|
|
discard pyl.account.codeHash.data.copyFrom(data.toOpenArray(start, start + 31))
|
|
else:
|
|
pyl.account.codeHash = EMPTY_CODE_HASH
|
|
|
|
ok()
|
|
|
|
proc deblobifyType*(record: openArray[byte]; T: type VertexRef):
|
|
Result[VertexType, AristoError] =
|
|
if record.len < 3: # minimum `Leaf` record
|
|
return err(DeblobVtxTooShort)
|
|
|
|
ok case record[^1] shr 6:
|
|
of 2: Branch
|
|
of 3: Leaf
|
|
else:
|
|
return err(DeblobUnknown)
|
|
|
|
proc deblobify*(
|
|
record: openArray[byte];
|
|
T: type VertexRef;
|
|
): Result[T,AristoError] =
|
|
## De-serialise a data record encoded with `blobify()`. The second
|
|
## argument `vtx` can be `nil`.
|
|
if record.len < 3: # minimum `Leaf` record
|
|
return err(DeblobVtxTooShort)
|
|
|
|
ok case record[^1] shr 6:
|
|
of 2: # `Branch` vertex
|
|
if record.len < 11: # at least two edges
|
|
return err(DeblobBranchTooShort)
|
|
let
|
|
aInx = record.len - 9
|
|
aIny = record.len - 2
|
|
var
|
|
offs = 0
|
|
lens = uint64.fromBytesBE record.toOpenArray(aInx, aIny) # bitmap
|
|
vtxList: array[16,VertexID]
|
|
n = 0
|
|
while lens != 0:
|
|
let len = lens and 0b1111
|
|
if len > 0:
|
|
vtxList[n] = VertexID(? load64(record, offs, int(len)))
|
|
inc n
|
|
lens = lens shr 4
|
|
|
|
let (isLeaf, pathSegment) =
|
|
NibblesBuf.fromHexPrefix record.toOpenArray(offs, aInx - 1)
|
|
if isLeaf:
|
|
return err(DeblobBranchGotLeafPrefix)
|
|
|
|
# End `while`
|
|
VertexRef(
|
|
vType: Branch,
|
|
pfx: pathSegment,
|
|
bVid: vtxList)
|
|
|
|
of 3: # `Leaf` vertex
|
|
let
|
|
sLen = record[^1].int and 0x3f # length of path segment
|
|
rLen = record.len - 1 # payload + path segment
|
|
pLen = rLen - sLen # payload length
|
|
if rLen < sLen or pLen < 1:
|
|
return err(DeblobLeafSizeGarbled)
|
|
let (isLeaf, pathSegment) =
|
|
NibblesBuf.fromHexPrefix record.toOpenArray(pLen, rLen-1)
|
|
if not isLeaf:
|
|
return err(DeblobLeafGotExtPrefix)
|
|
let vtx = VertexRef(
|
|
vType: Leaf,
|
|
pfx: pathSegment)
|
|
|
|
? record.toOpenArray(0, pLen - 1).deblobify(vtx.lData)
|
|
vtx
|
|
|
|
else:
|
|
return err(DeblobUnknown)
|
|
|
|
proc deblobify*(
|
|
data: openArray[byte];
|
|
T: type SavedState;
|
|
): Result[SavedState,AristoError] =
|
|
## De-serialise the last saved state data record previously encoded with
|
|
## `blobify()`.
|
|
if data.len != 41:
|
|
return err(DeblobWrongSize)
|
|
if data[^1] != 0x7f:
|
|
return err(DeblobWrongType)
|
|
|
|
ok(SavedState(
|
|
key: Hash32(array[32, byte].initCopyFrom(data.toOpenArray(0, 31))),
|
|
serial: uint64.fromBytesBE data.toOpenArray(32, 39)))
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# End
|
|
# ------------------------------------------------------------------------------
|