import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import argparse plt.rcParams["figure.figsize"] = [40, 30] from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() def readStats(name: str): df = pd.read_csv(name).convert_dtypes() # at least one item - let it lag in the beginning until we reach the min # block number or the table will be empty df.set_index("block_number", inplace=True) df.time /= 1000000000 df.drop(columns=["gas"], inplace=True) df["bps"] = df.blocks / df.time df["tps"] = df.txs / df.time return df def prettySecs(s: float): sa = abs(int(s)) ss = sa % 60 m = sa // 60 % 60 h = sa // (60 * 60) sign = "" if s >= 0 else "-" if h > 0: return f"{sign}{h}h{m}m{ss}s" elif m > 0: return f"{sign}{m}m{ss}s" else: return f"{sign}{ss}s" def formatBins(df: pd.DataFrame, bins: int): if bins > 0: bins = np.linspace( df.block_number.iloc[0] - df.blocks.iloc[0], df.block_number.iloc[-1], bins, dtype=int ) return df.groupby(pd.cut(df["block_number"], bins), observed=True) else: return df parser = argparse.ArgumentParser() parser.add_argument("baseline") parser.add_argument("contender") parser.add_argument("--plot", action="store_true") parser.add_argument( "--bins", default=10, type=int, help="Number of bins to group block ranges into in overview, 0=all rows", ) parser.add_argument( "--min-block-number", default=500000, type=int, help="Skip block blocks below the given number", ) args = parser.parse_args() min_block_number = args.min_block_number baseline = readStats(args.baseline) contender = readStats(args.contender) # Pick out the rows to match - a more sophisticated version of this would # interpolate, perhaps - also, maybe should check for non-matching block/tx counts df = baseline.merge(contender, on=("block_number", "blocks", "txs")) df.reset_index(inplace=True) if df.block_number.iloc[-1] > min_block_number + df.block_number.iloc[0]: cutoff = min( df.block_number.iloc[-1] - min_block_number, min_block_number, ) df = df[df.block_number >= cutoff] df["bpsd"] = ((df.bps_y - df.bps_x) / df.bps_x) df["tpsd"] = ((df.tps_y - df.tps_x) / df.tps_x.replace(0, 1)) df["timed"] = (df.time_y - df.time_x) / df.time_x if args.plot: plt.rcParams["axes.grid"] = True fig = plt.figure() bps = fig.add_subplot(2, 2, 1, title="Blocks per second (more is better)") bpsd = fig.add_subplot(2, 2, 2, title="Difference (>0 is better)") tps = fig.add_subplot(2, 2, 3, title="Transactions per second (more is better)") tpsd = fig.add_subplot(2, 2, 4, title="Difference (>0 is better)") bps.plot(df.block_number, df.bps_x.rolling(3).mean(), label="baseline") bps.plot(df.block_number, df.bps_y.rolling(3).mean(), label="contender") bpsd.plot(df.block_number, df.bpsd.rolling(3).mean()) tps.plot(df.block_number, df.tps_x.rolling(3).mean(), label="baseline") tps.plot(df.block_number, df.tps_y.rolling(3).mean(), label="contender") tpsd.plot(df.block_number, df.tpsd.rolling(3).mean()) bps.legend() tps.legend() fig.subplots_adjust(bottom=0.05, right=0.95, top=0.95, left=0.05) plt.show() print(f"{os.path.basename(args.baseline)} vs {os.path.basename(args.contender)}") print( formatBins(df, args.bins) .agg( dict.fromkeys( ["bps_x", "bps_y", "tps_x", "tps_y", "bpsd", "tpsd", "timed"], "mean" ), ) .to_string( formatters=dict( dict.fromkeys(["bpsd", "tpsd", "timed"], "{:,.2%}".format), **dict.fromkeys(["bps_x", "bps_y", "tps_x"], "{:,.2f}".format), ) ) ) print( f"\nblocks: {df.blocks.sum()}, baseline: {prettySecs(df.time_x.sum())}, contender: {prettySecs(df.time_y.sum())}" ) print(f"bpsd (mean): {df.bpsd.mean():.2%}") print(f"tpsd (mean): {df.tpsd.mean():.2%}") time_xt = df.time_x.sum() time_yt = df.time_y.sum() timet = time_yt - df.time_x.sum() print(f"Time (total): {prettySecs(timet)}, {(timet/time_xt):.2%}") print() print( "bpsd = blocks per sec diff (+), tpsd = txs per sec diff, timed = time to process diff (-)" ) print("+ = more is better, - = less is better")