# Nimbus # Copyright (c) 2018-2019 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed except according to those terms. import strformat, times, stew/ranges, sequtils, options, chronicles, stint, nimcrypto, stew/ranges/typedranges, eth/common, ./utils/[macros_procs_opcodes, utils_numeric], ./gas_meter, ./gas_costs, ./opcode_values, ./vm_forks, ../memory, ../message, ../stack, ../code_stream, ../computation, ../../vm_state, ../../errors, ../../constants, ../../vm_types, ../../db/[db_chain, state_db], ../../utils logScope: topics = "opcode impl" # ################################## # Syntactic sugar template push(x: typed) {.dirty.} = ## Push an expression on the computation stack computation.stack.push x # ################################## # 0s: Stop and Arithmetic Operations op add, inline = true, lhs, rhs: ## 0x01, Addition push: lhs + rhs op mul, inline = true, lhs, rhs: ## 0x02, Multiplication push: lhs * rhs op sub, inline = true, lhs, rhs: ## 0x03, Substraction push: lhs - rhs op divide, inline = true, lhs, rhs: ## 0x04, Division push: if rhs == 0: zero(Uint256) # EVM special casing of div by 0 else: lhs div rhs op sdiv, inline = true, lhs, rhs: ## 0x05, Signed division var r: UInt256 if rhs != 0: var a = lhs var b = rhs var signA, signB: bool extractSign(a, signA) extractSign(b, signB) r = a div b setSign(r, signA xor signB) push(r) op modulo, inline = true, lhs, rhs: ## 0x06, Modulo push: if rhs == 0: zero(Uint256) else: lhs mod rhs op smod, inline = true, lhs, rhs: ## 0x07, Signed modulo var r: UInt256 if rhs != 0: var sign: bool var v = lhs var m = rhs extractSign(m, sign) extractSign(v, sign) r = v mod m setSign(r, sign) push(r) op addmod, inline = true, lhs, rhs, modulus: ## 0x08, Modulo addition ## Intermediate computations do not roll over at 2^256 push: if modulus == 0: zero(UInt256) # EVM special casing of div by 0 else: addmod(lhs, rhs, modulus) op mulmod, inline = true, lhs, rhs, modulus: ## 0x09, Modulo multiplication ## Intermediate computations do not roll over at 2^256 push: if modulus == 0: zero(UInt256) # EVM special casing of div by 0 else: mulmod(lhs, rhs, modulus) op exp, inline = true, base, exponent: ## 0x0A, Exponentiation computation.gasMeter.consumeGas( computation.gasCosts[Exp].d_handler(exponent), reason="EXP: exponent bytes" ) push: if base.isZero: if exponent.isZero: # https://github.com/ethereum/yellowpaper/issues/257 # https://github.com/ethereum/tests/pull/460 # https://github.com/ewasm/evm2wasm/issues/137 1.u256 else: zero(UInt256) else: base.pow(exponent) op signExtend, inline = false, bits, value: ## 0x0B, Sign extend ## Extend length of two’s complement signed integer. var res: UInt256 if bits <= 31.u256: let one = 1.u256 testBit = bits.toInt * 8 + 7 bitPos = one shl testBit mask = bitPos - one if not isZero(value and bitPos): res = value or (not mask) else: res = value and mask else: res = value push: res # ########################################## # 10s: Comparison & Bitwise Logic Operations op lt, inline = true, lhs, rhs: ## 0x10, Less-than comparison push: (lhs < rhs).uint.u256 op gt, inline = true, lhs, rhs: ## 0x11, Greater-than comparison push: (lhs > rhs).uint.u256 op slt, inline = true, lhs, rhs: ## 0x12, Signed less-than comparison push: (cast[Int256](lhs) < cast[Int256](rhs)).uint.u256 op sgt, inline = true, lhs, rhs: ## 0x13, Signed greater-than comparison push: (cast[Int256](lhs) > cast[Int256](rhs)).uint.u256 op eq, inline = true, lhs, rhs: ## 0x14, Signed greater-than comparison push: (lhs == rhs).uint.u256 op isZero, inline = true, value: ## 0x15, Check if zero push: value.isZero.uint.u256 op andOp, inline = true, lhs, rhs: ## 0x16, Bitwise AND push: lhs and rhs op orOp, inline = true, lhs, rhs: ## 0x17, Bitwise AND push: lhs or rhs op xorOp, inline = true, lhs, rhs: ## 0x18, Bitwise AND push: lhs xor rhs op notOp, inline = true, value: ## 0x19, Check if zero push: value.not op byteOp, inline = true, position, value: ## 0x20, Retrieve single byte from word. let pos = position.toInt push: if pos >= 32 or pos < 0: zero(Uint256) else: when system.cpuEndian == bigEndian: cast[array[32, byte]](value)[pos].u256 else: cast[array[32, byte]](value)[31 - pos].u256 # ########################################## # 20s: SHA3 op sha3, inline = true, startPos, length: ## 0x20, Compute Keccak-256 hash. let (pos, len) = (startPos.safeInt, length.safeInt) if pos < 0 or len < 0 or pos > 2147483648: raise newException(OutOfBoundsRead, "Out of bounds memory access") computation.gasMeter.consumeGas( computation.gasCosts[Op.Sha3].m_handler(computation.memory.len, pos, len), reason="SHA3: word gas cost" ) computation.memory.extend(pos, len) let endRange = min(pos + len, computation.memory.len) - 1 if endRange == -1: push(EMPTY_SHA3) else: push: keccak256.digest computation.memory.bytes.toOpenArray(pos, endRange) # ########################################## # 30s: Environmental Information proc writePaddedResult(mem: var Memory, data: openarray[byte], memPos, dataPos, len: Natural, paddingValue = 0.byte) = mem.extend(memPos, len) let dataEndPosition = dataPos.int64 + len - 1 let sourceBytes = data[min(dataPos, data.len) .. min(data.len - 1, dataEndPosition)] mem.write(memPos, sourceBytes) # Don't duplicate zero-padding of mem.extend let paddingOffset = min(memPos + sourceBytes.len, mem.len) let numPaddingBytes = min(mem.len - paddingOffset, len - sourceBytes.len) if numPaddingBytes > 0: # TODO: avoid unnecessary memory allocation mem.write(paddingOffset, repeat(paddingValue, numPaddingBytes)) op address, inline = true: ## 0x30, Get address of currently executing account. push: computation.msg.storageAddress op balance, inline = true: ## 0x31, Get balance of the given account. let address = computation.stack.popAddress() push: computation.vmState.readOnlyStateDB.getBalance(address) op origin, inline = true: ## 0x32, Get execution origination address. push: computation.msg.origin op caller, inline = true: ## 0x33, Get caller address. push: computation.msg.sender op callValue, inline = true: ## 0x34, Get deposited value by the instruction/transaction ## responsible for this execution push: computation.msg.value op callDataLoad, inline = false, startPos: ## 0x35, Get input data of current environment let start = startPos.cleanMemRef if start >= computation.msg.data.len: push: 0 return # If the data does not take 32 bytes, pad with zeros let endRange = min(computation.msg.data.len - 1, start + 31) let presentBytes = endRange - start # We rely on value being initialized with 0 by default var value: array[32, byte] value[0 .. presentBytes] = computation.msg.data.toOpenArray(start, endRange) push: value op callDataSize, inline = true: ## 0x36, Get size of input data in current environment. push: computation.msg.data.len.u256 op callDataCopy, inline = false, memStartPos, copyStartPos, size: ## 0x37, Copy input data in current environment to memory. # TODO tests: https://github.com/status-im/nimbus/issues/67 let (memPos, copyPos, len) = (memStartPos.cleanMemRef, copyStartPos.cleanMemRef, size.cleanMemRef) computation.gasMeter.consumeGas( computation.gasCosts[CallDataCopy].m_handler(computation.memory.len, memPos, len), reason="CallDataCopy fee") computation.memory.writePaddedResult(computation.msg.data, memPos, copyPos, len) op codeSize, inline = true: ## 0x38, Get size of code running in current environment. push: computation.code.len op codeCopy, inline = false, memStartPos, copyStartPos, size: ## 0x39, Copy code running in current environment to memory. # TODO tests: https://github.com/status-im/nimbus/issues/67 let (memPos, copyPos, len) = (memStartPos.cleanMemRef, copyStartPos.cleanMemRef, size.cleanMemRef) computation.gasMeter.consumeGas( computation.gasCosts[CodeCopy].m_handler(computation.memory.len, memPos, len), reason="CodeCopy fee") computation.memory.writePaddedResult(computation.code.bytes, memPos, copyPos, len) op gasprice, inline = true: ## 0x3A, Get price of gas in current environment. push: computation.msg.gasPrice op extCodeSize, inline = true: ## 0x3b, Get size of an account's code let account = computation.stack.popAddress() let codeSize = computation.vmState.readOnlyStateDB.getCode(account).len push uint(codeSize) op extCodeCopy, inline = true: ## 0x3c, Copy an account's code to memory. let account = computation.stack.popAddress() let (memStartPos, codeStartPos, size) = computation.stack.popInt(3) let (memPos, codePos, len) = (memStartPos.cleanMemRef, codeStartPos.cleanMemRef, size.cleanMemRef) computation.gasMeter.consumeGas( computation.gasCosts[ExtCodeCopy].m_handler(computation.memory.len, memPos, len), reason="ExtCodeCopy fee") let codeBytes = computation.vmState.readOnlyStateDB.getCode(account) computation.memory.writePaddedResult(codeBytes.toOpenArray, memPos, codePos, len) op returnDataSize, inline = true: ## 0x3d, Get size of output data from the previous call from the current environment. push: computation.returnData.len op returnDataCopy, inline = false, memStartPos, copyStartPos, size: ## 0x3e, Copy output data from the previous call to memory. let (memPos, copyPos, len) = (memStartPos.cleanMemRef, copyStartPos.cleanMemRef, size.cleanMemRef) let gasCost = computation.gasCosts[ReturnDataCopy].m_handler(computation.memory.len, memPos, len) computation.gasMeter.consumeGas( gasCost, reason="returnDataCopy fee") if copyPos + len > computation.returnData.len: # TODO Geth additionally checks copyPos + len < 64 # Parity uses a saturating addition # Yellow paper mentions μs[1] + i are not subject to the 2^256 modulo. raise newException(OutOfBoundsRead, "Return data length is not sufficient to satisfy request. Asked \n" & &"for data from index {copyStartPos} to {copyStartPos + size}. Return data is {computation.returnData.len} in \n" & "length") computation.memory.writePaddedResult(computation.returnData, memPos, copyPos, len) # ########################################## # 40s: Block Information op blockhash, inline = true, blockNumber: ## 0x40, Get the hash of one of the 256 most recent complete blocks. push: computation.vmState.getAncestorHash(blockNumber.vmWordToBlockNumber) op coinbase, inline = true: ## 0x41, Get the block's beneficiary address. push: computation.vmState.coinbase op timestamp, inline = true: ## 0x42, Get the block's timestamp. push: computation.vmState.timestamp.toUnix op blocknumber, inline = true: ## 0x43, Get the block's number. push: computation.vmState.blockNumber.blockNumberToVmWord op difficulty, inline = true: ## 0x44, Get the block's difficulty push: computation.vmState.difficulty op gasLimit, inline = true: ## 0x45, Get the block's gas limit push: computation.vmState.gasLimit # ########################################## # 50s: Stack, Memory, Storage and Flow Operations op pop, inline = true: ## 0x50, Remove item from stack. discard computation.stack.popInt() op mload, inline = true, memStartPos: ## 0x51, Load word from memory let memPos = memStartPos.cleanMemRef computation.gasMeter.consumeGas( computation.gasCosts[MLoad].m_handler(computation.memory.len, memPos, 32), reason="MLOAD: GasVeryLow + memory expansion" ) computation.memory.extend(memPos, 32) push: computation.memory.read(memPos, 32) # TODO, should we convert to native endianness? op mstore, inline = true, memStartPos, value: ## 0x52, Save word to memory let memPos = memStartPos.cleanMemRef computation.gasMeter.consumeGas( computation.gasCosts[MStore].m_handler(computation.memory.len, memPos, 32), reason="MSTORE: GasVeryLow + memory expansion" ) computation.memory.extend(memPos, 32) computation.memory.write(memPos, value.toByteArrayBE) # is big-endian correct? Parity/Geth do convert op mstore8, inline = true, memStartPos, value: ## 0x53, Save byte to memory let memPos = memStartPos.cleanMemRef computation.gasMeter.consumeGas( computation.gasCosts[MStore].m_handler(computation.memory.len, memPos, 1), reason="MSTORE8: GasVeryLow + memory expansion" ) computation.memory.extend(memPos, 1) computation.memory.write(memPos, [value.toByteArrayBE[31]]) op sload, inline = true, slot: ## 0x54, Load word from storage. let (value, _) = computation.vmState.readOnlyStateDB.getStorage(computation.msg.storageAddress, slot) push(value) op sstore, inline = false, slot, value: ## 0x55, Save word to storage. checkInStaticContext(computation) let (currentValue, existing) = computation.vmState.readOnlyStateDB.getStorage(computation.msg.storageAddress, slot) let gasParam = GasParams(kind: Op.Sstore, s_isStorageEmpty: currentValue.isZero) (gasCost, gasRefund) = computation.gasCosts[Sstore].c_handler(value, gasParam) computation.gasMeter.consumeGas(gasCost, &"SSTORE: {computation.msg.storageAddress}[{slot}] -> {value} ({currentValue})") if gasRefund > 0: computation.gasMeter.refundGas(gasRefund) computation.vmState.mutateStateDB: db.setStorage(computation.msg.storageAddress, slot, value) proc jumpImpl(computation: BaseComputation, jumpTarget: UInt256) = if jumpTarget >= computation.code.len.u256: raise newException(InvalidJumpDestination, "Invalid Jump Destination") let jt = jumpTarget.toInt computation.code.pc = jt let nextOpcode = computation.code.peek if nextOpcode != JUMPDEST: raise newException(InvalidJumpDestination, "Invalid Jump Destination") # TODO: next check seems redundant if not computation.code.isValidOpcode(jt): raise newException(InvalidInstruction, "Jump resulted in invalid instruction") op jump, inline = true, jumpTarget: ## 0x56, Alter the program counter jumpImpl(computation, jumpTarget) op jumpI, inline = true, jumpTarget, testedValue: ## 0x57, Conditionally alter the program counter. if testedValue != 0: jumpImpl(computation, jumpTarget) op pc, inline = true: ## 0x58, Get the value of the program counter prior to the increment corresponding to this instruction. push: max(computation.code.pc - 1, 0) op msize, inline = true: ## 0x59, Get the size of active memory in bytes. push: computation.memory.len op gas, inline = true: ## 0x5a, Get the amount of available gas, including the corresponding reduction for the cost of this instruction. push: computation.gasMeter.gasRemaining op jumpDest, inline = true: ## 0x5b, Mark a valid destination for jumps. This operation has no effect on machine state during execution. discard # ########################################## # 60s & 70s: Push Operations. # 80s: Duplication Operations # 90s: Exchange Operations # a0s: Logging Operations genPush() genDup() genSwap() genLog() # ########################################## # f0s: System operations. proc canTransfer(computation: BaseComputation, memPos, memLen: int, value: Uint256, opCode: static[Op]): bool = let gasParams = GasParams(kind: Create, cr_currentMemSize: computation.memory.len, cr_memOffset: memPos, cr_memLength: memLen ) var gasCost = computation.gasCosts[Create].c_handler(1.u256, gasParams).gasCost let reason = &"CREATE: GasCreate + {memLen} * memory expansion" when opCode == Create2: gasCost = gasCost + computation.gasCosts[Create2].m_handler(0, 0, memLen) computation.gasMeter.consumeGas(gasCost, reason = reason) computation.memory.extend(memPos, memLen) # the sender is childmsg sender, not parent msg sender # perhaps we need to move this code somewhere else # to avoid confusion let senderBalance = computation.vmState.readOnlyStateDb(). getBalance(computation.msg.storageAddress) if senderBalance < value: debug "Computation Failure", reason = "Insufficient funds available to transfer", required = computation.msg.value, balance = senderBalance return false # unlike the other MaxCallDepth comparison, # this one has not been entered child computation # thats why it has `+ 1` if computation.msg.depth + 1 > MaxCallDepth: debug "Computation Failure", reason = "Stack too deep", maximumDepth = MaxCallDepth, depth = computation.msg.depth return false result = true proc setupCreate(computation: BaseComputation, memPos, len: int, value: Uint256, opCode: static[Op]): BaseComputation = let callData = computation.memory.read(memPos, len) var createMsgGas = computation.getGasRemaining() if getFork(computation) >= FkTangerine: createMsgGas -= createMsgGas div 64 # Consume gas here that will be passed to child computation.gasMeter.consumeGas(createMsgGas, reason="CREATE") # Generate new address and check for collisions var contractAddress: EthAddress isCollision: bool when opCode == Create: computation.vmState.mutateStateDB: # Regarding collisions, see: https://github.com/status-im/nimbus/issues/133 # See: https://github.com/ethereum/EIPs/issues/684 let creationNonce = db.getNonce(computation.msg.storageAddress) db.setNonce(computation.msg.storageAddress, creationNonce + 1) contractAddress = generateAddress(computation.msg.storageAddress, creationNonce) isCollision = db.hasCodeOrNonce(contractAddress) else: computation.vmState.mutateStateDB: db.incNonce(computation.msg.storageAddress) let salt = computation.stack.popInt() contractAddress = generateSafeAddress(computation.msg.storageAddress, salt, callData) isCollision = db.hasCodeOrNonce(contractAddress) if isCollision: debug "Address collision while creating contract", address = contractAddress.toHex push: 0 return let childMsg = prepareChildMessage( computation, gas = createMsgGas, to = CREATE_CONTRACT_ADDRESS, value = value, data = @[], code = callData, contractCreation = true, options = MessageOptions(createAddress: contractAddress) ) childMsg.sender = computation.msg.storageAddress result = newBaseComputation( computation.vmState, computation.vmState.blockNumber, childMsg, some(computation.getFork)) template genCreate(callName: untyped, opCode: Op): untyped = op callName, inline = false, val, startPosition, size: ## 0xf0, Create a new account with associated code. let (memPos, len) = (startPosition.safeInt, size.safeInt) if not computation.canTransfer(memPos, len, val, opCode): push: 0 return var childComp = setupCreate(computation, memPos, len, val, opCode) if childComp.isNil: return continuation(childComp): addChildComputation(computation, childComp) if childComp.isError: push: 0 else: push: childComp.msg.storageAddress checkInStaticContext(computation) childComp.applyMessage(Create) genCreate(create, Create) genCreate(create2, Create2) proc callParams(computation: BaseComputation): (UInt256, UInt256, EthAddress, EthAddress, EthAddress, UInt256, UInt256, UInt256, UInt256, MsgFlags) = let gas = computation.stack.popInt() let codeAddress = computation.stack.popAddress() let (value, memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize) = computation.stack.popInt(5) let to = codeAddress let sender = computation.msg.storageAddress result = (gas, value, to, sender, codeAddress, memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize, computation.msg.flags) proc callCodeParams(computation: BaseComputation): (UInt256, UInt256, EthAddress, EthAddress, EthAddress, UInt256, UInt256, UInt256, UInt256, MsgFlags) = let gas = computation.stack.popInt() let to = computation.stack.popAddress() let (value, memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize) = computation.stack.popInt(5) result = (gas, value, to, computation.msg.storageAddress, # sender to, # code_address memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize, computation.msg.flags) proc delegateCallParams(computation: BaseComputation): (UInt256, UInt256, EthAddress, EthAddress, EthAddress, UInt256, UInt256, UInt256, UInt256, MsgFlags) = let gas = computation.stack.popInt() let codeAddress = computation.stack.popAddress() let (memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize) = computation.stack.popInt(4) let to = computation.msg.storageAddress let sender = computation.msg.sender let value = computation.msg.value result = (gas, value, to, sender, codeAddress, memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize, computation.msg.flags) proc staticCallParams(computation: BaseComputation): (UInt256, UInt256, EthAddress, EthAddress, EthAddress, UInt256, UInt256, UInt256, UInt256, MsgFlags) = let gas = computation.stack.popInt() let to = computation.stack.popAddress() let (memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize) = computation.stack.popInt(4) result = (gas, 0.u256, # value to, computation.msg.storageAddress, # sender to, # codeAddress memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize, emvcStatic) # is_static template genCall(callName: untyped, opCode: Op): untyped = proc `callName Setup`(computation: BaseComputation, callNameStr: string): BaseComputation = let (gas, value, to, sender, codeAddress, memoryInputStartPosition, memoryInputSize, memoryOutputStartPosition, memoryOutputSize, flags) = `callName Params`(computation) let (memInPos, memInLen, memOutPos, memOutLen) = (memoryInputStartPosition.cleanMemRef, memoryInputSize.cleanMemRef, memoryOutputStartPosition.cleanMemRef, memoryOutputSize.cleanMemRef) let isNewAccount = if getFork(computation) >= FkSpurious: computation.vmState.readOnlyStateDb.isDeadAccount(to) else: not computation.vmState.readOnlyStateDb.accountExists(to) let (memOffset, memLength) = if calcMemSize(memInPos, memInLen) > calcMemSize(memOutPos, memOutLen): (memInPos, memInLen) else: (memOutPos, memOutLen) let (childGasFee, childGasLimit) = computation.gasCosts[opCode].c_handler( value, GasParams(kind: opCode, c_isNewAccount: isNewAccount, c_gasBalance: computation.gasMeter.gasRemaining, c_contractGas: gas, c_currentMemSize: computation.memory.len, c_memOffset: memOffset, c_memLength: memLength )) if childGasFee >= 0: computation.gasMeter.consumeGas(childGasFee, reason = $opCode) if childGasFee < 0 and childGasLimit <= 0: raise newException(OutOfGas, "Gas not enough to perform calculation (" & callNameStr & ")") computation.memory.extend(memInPos, memInLen) computation.memory.extend(memOutPos, memOutLen) let callData = computation.memory.read(memInPos, memInLen) code = computation.vmState.readOnlyStateDb.getCode(codeAddress) var childMsg = prepareChildMessage( computation, childGasLimit, to, value, callData, code.toSeq, false, MessageOptions(flags: flags) ) childMsg.sender = sender when opCode == CallCode: childMsg.storageAddress = computation.msg.storageAddress when opCode == DelegateCall: childMsg.codeAddress = codeAddress var childComp = newBaseComputation( computation.vmState, computation.vmState.blockNumber, childMsg, some(computation.getFork)) computation.memOutPos = memOutPos computation.memOutLen = memOutLen result = childComp op callName, inline = false: ## CALL, 0xf1, Message-Call into an account ## CALLCODE, 0xf2, Message-call into this account with an alternative account's code. ## DELEGATECALL, 0xf4, Message-call into this account with an alternative account's code, but persisting the current values for sender and value. ## STATICCALL, 0xfa, Static message-call into an account. var childComp = `callName Setup`(computation, callName.astToStr) continuation(childComp): addChildComputation(computation, childComp) if childComp.isError: push: 0 else: push: 1 if not childComp.shouldEraseReturnData: let actualOutputSize = min(computation.memOutLen, childComp.output.len) computation.memory.write( computation.memOutPos, childComp.output.toOpenArray(0, actualOutputSize - 1)) when opCode == Call: if emvcStatic == computation.msg.flags and childComp.msg.value > 0.u256: raise newException(StaticContextError, "Cannot modify state while inside of a STATICCALL context") childComp.applyMessage(opCode) genCall(call, Call) genCall(callCode, CallCode) genCall(delegateCall, DelegateCall) genCall(staticCall, StaticCall) op returnOp, inline = false, startPos, size: ## 0xf3, Halt execution returning output data. let (pos, len) = (startPos.cleanMemRef, size.cleanMemRef) computation.gasMeter.consumeGas( computation.gasCosts[Return].m_handler(computation.memory.len, pos, len), reason = "RETURN" ) computation.memory.extend(pos, len) computation.output = computation.memory.read(pos, len) op revert, inline = false, startPos, size: ## 0xfd, Halt execution reverting state changes but returning data and remaining gas. let (pos, len) = (startPos.cleanMemRef, size.cleanMemRef) computation.gasMeter.consumeGas( computation.gasCosts[Revert].m_handler(computation.memory.len, pos, len), reason = "REVERT" ) computation.memory.extend(pos, len) computation.output = computation.memory.read(pos, len) # setError(msg, false) will signal cheap revert computation.setError("REVERT opcode executed", false) proc selfDestructImpl(computation: BaseComputation, beneficiary: EthAddress) = ## 0xff Halt execution and register account for later deletion. # TODO: This is the basic implementation of the self destruct op, # Other forks have some extra functionality around this call. # In particular, EIP150 and EIP161 have extra requirements. computation.vmState.mutateStateDB: let localBalance = db.getBalance(computation.msg.storageAddress) beneficiaryBalance = db.getBalance(beneficiary) # Transfer to beneficiary db.setBalance(beneficiary, localBalance + beneficiaryBalance) # Zero the balance of the address being deleted. # This must come after sending to beneficiary in case the # contract named itself as the beneficiary. db.setBalance(computation.msg.storageAddress, 0.u256) # Register the account to be deleted computation.registerAccountForDeletion(beneficiary) trace "SELFDESTRUCT", storageAddress = computation.msg.storageAddress.toHex, localBalance = localBalance.toString, beneficiary = beneficiary.toHex op selfDestruct, inline = false: let beneficiary = computation.stack.popAddress() selfDestructImpl(computation, beneficiary) op selfDestructEip150, inline = false: let beneficiary = computation.stack.popAddress() let gasParams = GasParams(kind: SelfDestruct, sd_condition: not computation.vmState.readOnlyStateDb.accountExists(beneficiary) ) let gasCost = computation.gasCosts[SelfDestruct].c_handler(0.u256, gasParams).gasCost computation.gasMeter.consumeGas(gasCost, reason = "SELFDESTRUCT EIP150") selfDestructImpl(computation, beneficiary) op selfDestructEip161, inline = false: checkInStaticContext(computation) let beneficiary = computation.stack.popAddress() stateDb = computation.vmState.readOnlyStateDb isDead = stateDb.isDeadAccount(beneficiary) balance = stateDb.getBalance(computation.msg.storageAddress) let gasParams = GasParams(kind: SelfDestruct, sd_condition: isDead and not balance.isZero ) let gasCost = computation.gasCosts[SelfDestruct].c_handler(0.u256, gasParams).gasCost computation.gasMeter.consumeGas(gasCost, reason = "SELFDESTRUCT EIP161") selfDestructImpl(computation, beneficiary) # Constantinople's new opcodes op shlOp, inline = true, shift, num: let shiftLen = shift.safeInt if shiftLen >= 256: push: 0 else: push: num shl shiftLen op shrOp, inline = true, shift, num: let shiftLen = shift.safeInt if shiftLen >= 256: push: 0 else: # uint version of `shr` push: num shr shiftLen op sarOp, inline = true: let shiftLen = computation.stack.popInt().safeInt let num = cast[Int256](computation.stack.popInt()) if shiftLen >= 256: if num.isNegative: push: cast[Uint256]((-1).i256) else: push: 0 else: # int version of `shr` then force the result # into uint256 push: cast[Uint256](num shr shiftLen) op extCodeHash, inline = true: let address = computation.stack.popAddress() # this is very inefficient, it calls underlying # database too much, we can reduce it by implementing accounts # cache if not computation.vmState.readOnlyStateDB.accountExists(address): push: 0 return if computation.vmState.readOnlyStateDB.isEmptyAccount(address): push: 0 else: push: computation.vmState.readOnlyStateDB.getCodeHash(address)