# nimbus-eth1 # Copyright (c) 2021 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed # except according to those terms. ## Aristo DB -- Patricia Trie structural data types ## ================================================ ## {.push raises: [].} import std/[sets, tables], eth/[common, trie/nibbles], "."/[desc_error, desc_identifiers] type VertexType* = enum ## Type of `Aristo Trie` vertex Leaf Extension Branch AristoAccount* = object nonce*: AccountNonce ## Some `uint64` type balance*: UInt256 storageID*: VertexID ## Implies storage root Merkle hash key codeHash*: Hash256 PayloadType* = enum ## Type of leaf data. On the Aristo backend, data are serialised as ## follows: ## ## * Opaque data => opaque data, marked `0xff` ## * `Account` object => RLP encoded data, marked `0xaa` ## * `AristoAccount` object => serialised account, marked `0x99` or smaller ## ## On deserialisation from the Aristo backend, there is no reverese for an ## `Account` object. It rather is kept as an RLP encoded `Blob`. ## ## * opaque data, marked `0xff` => `RawData` ## * RLP encoded data, marked `0xaa` => `RlpData` ## * erialised account, marked `0x99` or smaller => `AccountData` ## RawData ## Generic data RlpData ## Marked RLP encoded AccountData ## `Aristo account` with vertex IDs links PayloadRef* = ref object case pType*: PayloadType of RawData: rawBlob*: Blob ## Opaque data, default value of RlpData: rlpBlob*: Blob ## Opaque data marked RLP encoded of AccountData: account*: AristoAccount VertexRef* = ref object of RootRef ## Vertex for building a hexary Patricia or Merkle Patricia Trie case vType*: VertexType of Leaf: lPfx*: NibblesSeq ## Portion of path segment lData*: PayloadRef ## Reference to data payload of Extension: ePfx*: NibblesSeq ## Portion of path segment eVid*: VertexID ## Edge to vertex with ID `eVid` of Branch: bVid*: array[16,VertexID] ## Edge list with vertex IDs NodeRef* = ref object of VertexRef ## Combined record for a *traditional* ``Merkle Patricia Tree` node merged ## with a structural `VertexRef` type object. error*: AristoError ## Can be used for error signalling key*: array[16,HashKey] ## Merkle hash/es for vertices # ---------------------- FilterRef* = ref object ## Delta layer with expanded sequences for quick access fid*: FilterID ## Filter identifier src*: HashKey ## Applicable to this state root trg*: HashKey ## Resulting state root (i.e. `kMap[1]`) sTab*: Table[VertexID,VertexRef] ## Filter structural vertex table kMap*: Table[VertexID,HashKey] ## Filter Merkle hash key mapping vGen*: seq[VertexID] ## Filter unique vertex ID generator LayerRef* = ref object ## Hexary trie database layer structures. Any layer holds the full ## change relative to the backend. sTab*: Table[VertexID,VertexRef] ## Structural vertex table lTab*: Table[LeafTie,VertexID] ## Direct access, path to leaf vertex kMap*: Table[VertexID,HashLabel] ## Merkle hash key mapping pAmk*: Table[HashLabel,VertexID] ## Reverse `kMap` entries, hash key lookup pPrf*: HashSet[VertexID] ## Locked vertices (proof nodes) vGen*: seq[VertexID] ## Unique vertex ID generator txUid*: uint ## Transaction identifier if positive dirty*: bool ## Needs to be hashified if `true` # ---------------------- QidLayoutRef* = ref object ## Layout of cascaded list of filter ID slot queues where a slot queue ## with index `N+1` serves as an overflow queue of slot queue `N`. q*: array[4,QidSpec] QidSpec* = tuple ## Layout of a filter ID slot queue size: uint ## Capacity of queue, length within `1..wrap` width: uint ## Instance gaps (relative to prev. item) wrap: QueueID ## Range `1..wrap` for round-robin queue QidSchedRef* = ref object of RootRef ## Current state of the filter queues ctx*: QidLayoutRef ## Organisation of the FIFO state*: seq[(QueueID,QueueID)] ## Current fill state const DefaultQidWrap = QueueID(0x3fff_ffff_ffff_ffffu64) QidSpecSizeMax* = high(uint32).uint ## Maximum value allowed for a `size` value of a `QidSpec` object QidSpecWidthMax* = high(uint32).uint ## Maximum value allowed for a `width` value of a `QidSpec` object # ------------------------------------------------------------------------------ # Private helpers # ------------------------------------------------------------------------------ func max(a, b, c: int): int = max(max(a,b),c) # ------------------------------------------------------------------------------ # Public helpers: `NodeRef` and `PayloadRef` # ------------------------------------------------------------------------------ proc `==`*(a, b: PayloadRef): bool = ## Beware, potential deep comparison if a.isNil: return b.isNil if b.isNil: return false if unsafeAddr(a) != unsafeAddr(b): if a.pType != b.pType: return false case a.pType: of RawData: if a.rawBlob != b.rawBlob: return false of RlpData: if a.rlpBlob != b.rlpBlob: return false of AccountData: if a.account != b.account: return false true proc `==`*(a, b: VertexRef): bool = ## Beware, potential deep comparison if a.isNil: return b.isNil if b.isNil: return false if unsafeAddr(a[]) != unsafeAddr(b[]): if a.vType != b.vType: return false case a.vType: of Leaf: if a.lPfx != b.lPfx or a.lData != b.lData: return false of Extension: if a.ePfx != b.ePfx or a.eVid != b.eVid: return false of Branch: for n in 0..15: if a.bVid[n] != b.bVid[n]: return false true proc `==`*(a, b: NodeRef): bool = ## Beware, potential deep comparison if a.VertexRef != b.VertexRef: return false case a.vType: of Extension: if a.key[0] != b.key[0]: return false of Branch: for n in 0..15: if a.bVid[n] != 0.VertexID and a.key[n] != b.key[n]: return false else: discard true # ------------------------------------------------------------------------------ # Public helpers, miscellaneous functions # ------------------------------------------------------------------------------ proc dup*(pld: PayloadRef): PayloadRef = ## Duplicate payload. case pld.pType: of RawData: PayloadRef( pType: RawData, rawBlob: pld.rawBlob) of RlpData: PayloadRef( pType: RlpData, rlpBlob: pld.rlpBlob) of AccountData: PayloadRef( pType: AccountData, account: pld.account) proc dup*(vtx: VertexRef): VertexRef = ## Duplicate vertex. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if vtx.isNil: VertexRef(nil) else: case vtx.vType: of Leaf: VertexRef( vType: Leaf, lPfx: vtx.lPfx, lData: vtx.ldata.dup) of Extension: VertexRef( vType: Extension, ePfx: vtx.ePfx, eVid: vtx.eVid) of Branch: VertexRef( vType: Branch, bVid: vtx.bVid) proc dup*(node: NodeRef): NodeRef = ## Duplicate node. # Not using `deepCopy()` here (some `gc` needs `--deepcopy:on`.) if node.isNil: NodeRef(nil) else: case node.vType: of Leaf: NodeRef( vType: Leaf, lPfx: node.lPfx, lData: node.ldata.dup, key: node.key) of Extension: NodeRef( vType: Extension, ePfx: node.ePfx, eVid: node.eVid, key: node.key) of Branch: NodeRef( vType: Branch, bVid: node.bVid, key: node.key) proc dup*(layer: LayerRef): LayerRef = ## Duplicate layer. result = LayerRef( lTab: layer.lTab, kMap: layer.kMap, pAmk: layer.pAmk, pPrf: layer.pPrf, vGen: layer.vGen, txUid: layer.txUid) for (k,v) in layer.sTab.pairs: result.sTab[k] = v.dup # --------------- func to*(node: NodeRef; T: type VertexRef): T = ## Extract a copy of the `VertexRef` part from a `NodeRef`. node.VertexRef.dup func to*(a: array[4,tuple[size, width: int]]; T: type QidLayoutRef): T = ## Convert a size-width array to a `QidLayoutRef` layout. Over large ## array field values are adjusted to its maximal size. var q: array[4,QidSpec] for n in 0..3: q[n] = (min(a[n].size.uint, QidSpecSizeMax), min(a[n].width.uint, QidSpecWidthMax), DefaultQidWrap) q[0].width = 0 T(q: q) func to*(a: array[4,tuple[size, width, wrap: int]]; T: type QidLayoutRef): T = ## Convert a size-width-wrap array to a `QidLayoutRef` layout. Over large ## array field values are adjusted to its maximal size. Too small `wrap` ## values are adjusted to its minimal size. var q: array[4,QidSpec] for n in 0..2: q[n] = (min(a[n].size.uint, QidSpecSizeMax), min(a[n].width.uint, QidSpecWidthMax), QueueID(max(a[n].size + a[n+1].width, a[n].width+1, a[n].wrap))) q[0].width = 0 q[3] = (min(a[3].size.uint, QidSpecSizeMax), min(a[3].width.uint, QidSpecWidthMax), QueueID(max(a[3].size, a[3].width, a[3].wrap))) T(q: q) # ------------------------------------------------------------------------------ # Public constructors for filter slot scheduler state # ------------------------------------------------------------------------------ func init*(T: type QidSchedRef; a: array[4,(int,int)]): T = ## Constructor, see comments at the coverter function `to()` for adjustments ## of the layout argument `a`. T(ctx: a.to(QidLayoutRef)) func init*(T: type QidSchedRef; a: array[4,(int,int,int)]): T = ## Constructor, see comments at the coverter function `to()` for adjustments ## of the layout argument `a`. T(ctx: a.to(QidLayoutRef)) func init*(T: type QidSchedRef; ctx: QidLayoutRef): T = T(ctx: ctx) # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------