# nimbus-eth1 # Copyright (c) 2023-2024 Status Research & Development GmbH # Licensed under either of # * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or # http://www.apache.org/licenses/LICENSE-2.0) # * MIT license ([LICENSE-MIT](LICENSE-MIT) or # http://opensource.org/licenses/MIT) # at your option. This file may not be copied, modified, or distributed # except according to those terms. ## Aristo DB -- Patricia Trie builder, raw node insertion ## ====================================================== ## ## This module merges `PathID` values as hexary lookup paths into the ## `Patricia Trie`. When changing vertices (aka nodes without Merkle hashes), ## associated (but separated) Merkle hashes will be deleted unless locked. ## Instead of deleting locked hashes error handling is applied. ## ## Also, nodes (vertices plus merkle hashes) can be added which is needed for ## boundary proofing after `snap/1` download. The vertices are split from the ## nodes and stored as-is on the table holding `Patricia Trie` entries. The ## hashes are stored iin a separate table and the vertices are labelled ## `locked`. {.push raises: [].} import std/[algorithm, sequtils, strutils, sets, tables, typetraits], chronicles, eth/[common, trie/nibbles], results, stew/keyed_queue, ../../sync/protocol/snap/snap_types, "."/[aristo_desc, aristo_get, aristo_hike, aristo_layers, aristo_path, aristo_serialise, aristo_vid] logScope: topics = "aristo-merge" type LeafTiePayload* = object ## Generalised key-value pair for a sub-trie. The main trie is the ## sub-trie with `root=VertexID(1)`. leafTie*: LeafTie ## Full `Patricia Trie` path root-to-leaf payload*: PayloadRef ## Leaf data payload # ------------------------------------------------------------------------------ # Private getters & setters # ------------------------------------------------------------------------------ proc xPfx(vtx: VertexRef): NibblesSeq = case vtx.vType: of Leaf: return vtx.lPfx of Extension: return vtx.ePfx of Branch: doAssert vtx.vType != Branch # Ooops # ------------------------------------------------------------------------------ # Private helpers # ------------------------------------------------------------------------------ proc to( rc: Result[Hike,AristoError]; T: type Result[bool,AristoError]; ): T = ## Return code converter if rc.isOk: ok true elif rc.error in {MergeLeafPathCachedAlready, MergeLeafPathOnBackendAlready}: ok false else: err(rc.error) # ----------- proc nullifyKey( db: AristoDbRef; # Database, top layer vid: VertexID; # Vertex IDs to clear ) = # Register for void hash (to be recompiled) db.layersResLabel vid proc clearMerkleKeys( db: AristoDbRef; # Database, top layer hike: Hike; # Implied vertex IDs to clear hashes for vid: VertexID; # Additionall vertex IDs to clear ) = for w in hike.legs.mapIt(it.wp.vid) & @[vid]: db.nullifyKey w proc setVtxAndKey( db: AristoDbRef; # Database, top layer vid: VertexID; # Vertex IDs to add/clear vtx: VertexRef; # Vertex to add ) = db.layersPutVtx(vid, vtx) db.layersResLabel vid # ----------- proc insertBranch( db: AristoDbRef; # Database, top layer hike: Hike; # Current state linkID: VertexID; # Vertex ID to insert linkVtx: VertexRef; # Vertex to insert payload: PayloadRef; # Leaf data payload ): Result[Hike,AristoError] = ## ## Insert `Extension->Branch` vertex chain or just a `Branch` vertex ## ## ... --(linkID)--> ## ## <-- immutable --> <---- mutable ----> .. ## ## will become either ## ## --(linkID)--> ## --(local1)--> ## [linkInx] --(local2)--> ## [leafInx] --(local3)--> ## ## or in case that there is no common prefix ## ## --(linkID)--> ## [linkInx] --(local2)--> ## [leafInx] --(local3)--> ## ## *) vertex was slightly modified or removed if obsolete `Extension` ## let n = linkVtx.xPfx.sharedPrefixLen hike.tail # Verify minimum requirements if hike.tail.len == n: # Should have been tackeld by `hikeUp()`, already return err(MergeLeafGarbledHike) if linkVtx.xPfx.len == n: return err(MergeBranchLinkVtxPfxTooShort) # Provide and install `forkVtx` let forkVtx = VertexRef(vType: Branch) linkInx = linkVtx.xPfx[n] leafInx = hike.tail[n] var leafLeg = Leg(nibble: -1) # Install `forkVtx` block: # Clear Merkle hashes (aka hash keys) unless proof mode. if db.pPrf.len == 0: db.clearMerkleKeys(hike, linkID) elif linkID in db.pPrf: return err(MergeNonBranchProofModeLock) if linkVtx.vType == Leaf: # Update vertex path lookup let path = hike.legsTo(NibblesSeq) & linkVtx.lPfx rc = path.pathToTag() if rc.isErr: debug "Branch link leaf path garbled", linkID, path return err(MergeBranchLinkLeafGarbled) let local = db.vidFetch(pristine = true) lty = LeafTie(root: hike.root, path: rc.value) db.top.final.lTab[lty] = local # update leaf path lookup cache db.setVtxAndKey(local, linkVtx) linkVtx.lPfx = linkVtx.lPfx.slice(1+n) forkVtx.bVid[linkInx] = local elif linkVtx.ePfx.len == n + 1: # This extension `linkVtx` becomes obsolete forkVtx.bVid[linkInx] = linkVtx.eVid else: let local = db.vidFetch db.setVtxAndKey(local, linkVtx) linkVtx.ePfx = linkVtx.ePfx.slice(1+n) forkVtx.bVid[linkInx] = local block: let local = db.vidFetch(pristine = true) forkVtx.bVid[leafInx] = local leafLeg.wp.vid = local leafLeg.wp.vtx = VertexRef( vType: Leaf, lPfx: hike.tail.slice(1+n), lData: payload) db.setVtxAndKey(local, leafLeg.wp.vtx) # Update branch leg, ready to append more legs var okHike = Hike(root: hike.root, legs: hike.legs) # Update in-beween glue linking `branch --[..]--> forkVtx` if 0 < n: let extVtx = VertexRef( vType: Extension, ePfx: hike.tail.slice(0,n), eVid: db.vidFetch) db.setVtxAndKey(linkID, extVtx) okHike.legs.add Leg( nibble: -1, wp: VidVtxPair( vid: linkID, vtx: extVtx)) db.setVtxAndKey(extVtx.eVid, forkVtx) okHike.legs.add Leg( nibble: leafInx.int8, wp: VidVtxPair( vid: extVtx.eVid, vtx: forkVtx)) else: db.setVtxAndKey(linkID, forkVtx) okHike.legs.add Leg( nibble: leafInx.int8, wp: VidVtxPair( vid: linkID, vtx: forkVtx)) okHike.legs.add leafLeg ok okHike proc concatBranchAndLeaf( db: AristoDbRef; # Database, top layer hike: Hike; # Path top has a `Branch` vertex brVid: VertexID; # Branch vertex ID from from `Hike` top brVtx: VertexRef; # Branch vertex, linked to from `Hike` payload: PayloadRef; # Leaf data payload ): Result[Hike,AristoError] = ## Append argument branch vertex passed as argument `(brID,brVtx)` and then ## a `Leaf` vertex derived from the argument `payload`. ## if hike.tail.len == 0: return err(MergeBranchGarbledTail) let nibble = hike.tail[0].int8 if brVtx.bVid[nibble].isValid: return err(MergeRootBranchLinkBusy) # Clear Merkle hashes (aka hash keys) unless proof mode. if db.pPrf.len == 0: db.clearMerkleKeys(hike, brVid) elif brVid in db.pPrf: return err(MergeBranchProofModeLock) # Ooops # Append branch vertex var okHike = Hike(root: hike.root, legs: hike.legs) okHike.legs.add Leg(wp: VidVtxPair(vtx: brVtx, vid: brVid), nibble: nibble) # Append leaf vertex let vid = db.vidFetch(pristine = true) vtx = VertexRef( vType: Leaf, lPfx: hike.tail.slice(1), lData: payload) brVtx.bVid[nibble] = vid db.setVtxAndKey(brVid, brVtx) db.setVtxAndKey(vid, vtx) okHike.legs.add Leg(wp: VidVtxPair(vtx: vtx, vid: vid), nibble: -1) ok okHike # ------------------------------------------------------------------------------ # Private functions: add Particia Trie leaf vertex # ------------------------------------------------------------------------------ proc topIsBranchAddLeaf( db: AristoDbRef; # Database, top layer hike: Hike; # Path top has a `Branch` vertex payload: PayloadRef; # Leaf data payload ): Result[Hike,AristoError] = ## Append a `Leaf` vertex derived from the argument `payload` after the top ## leg of the `hike` argument which is assumend to refert to a `Branch` ## vertex. If successful, the function returns the updated `hike` trail. if hike.tail.len == 0: return err(MergeBranchGarbledTail) let nibble = hike.legs[^1].nibble if nibble < 0: return err(MergeBranchGarbledNibble) let branch = hike.legs[^1].wp.vtx linkID = branch.bVid[nibble] linkVtx = db.getVtx linkID if not linkVtx.isValid: # # .. [nibble] --(linkID)--> nil # # <-------- immutable ------------> <---- mutable ----> .. # if db.pPrf.len == 0: # Not much else that can be done here debug "Dangling leaf link, reused", branch=hike.legs[^1].wp.vid, nibble, linkID, leafPfx=hike.tail # Reuse placeholder entry in table let vtx = VertexRef( vType: Leaf, lPfx: hike.tail, lData: payload) db.setVtxAndKey(linkID, vtx) var okHike = Hike(root: hike.root, legs: hike.legs) okHike.legs.add Leg(wp: VidVtxPair(vid: linkID, vtx: vtx), nibble: -1) return ok(okHike) if linkVtx.vType == Branch: # Slot link to a branch vertex should be handled by `hikeUp()` # # .. [nibble] --(linkID)--> [] # # <-------- immutable ------------> <---- mutable ----> .. # return db.concatBranchAndLeaf(hike, linkID, linkVtx, payload) db.insertBranch(hike, linkID, linkVtx, payload) proc topIsExtAddLeaf( db: AristoDbRef; # Database, top layer hike: Hike; # Path top has an `Extension` vertex payload: PayloadRef; # Leaf data payload ): Result[Hike,AristoError] = ## Append a `Leaf` vertex derived from the argument `payload` after the top ## leg of the `hike` argument which is assumend to refert to a `Extension` ## vertex. If successful, the function returns the ## updated `hike` trail. let extVtx = hike.legs[^1].wp.vtx extVid = hike.legs[^1].wp.vid brVid = extVtx.eVid brVtx = db.getVtx brVid var okHike = Hike(root: hike.root, legs: hike.legs) if not brVtx.isValid: # Blind vertex, promote to leaf vertex. # # --(extVid)--> --(brVid)--> nil # # <-------- immutable --------------> # let vtx = VertexRef( vType: Leaf, lPfx: extVtx.ePfx & hike.tail, lData: payload) db.setVtxAndKey(extVid, vtx) okHike.legs[^1].wp.vtx = vtx elif brVtx.vType != Branch: return err(MergeBranchRootExpected) else: let nibble = hike.tail[0].int8 linkID = brVtx.bVid[nibble] # # Required # # --(extVid)--> --(brVid)--> [nibble] --(linkID)--> nil # # <-------- immutable --------------> <-------- mutable ----------> .. # if linkID.isValid: return err(MergeRootBranchLinkBusy) # Clear Merkle hashes (aka hash keys) unless proof mode if db.pPrf.len == 0: db.clearMerkleKeys(hike, brVid) elif brVid in db.pPrf: return err(MergeBranchProofModeLock) let vid = db.vidFetch(pristine = true) vtx = VertexRef( vType: Leaf, lPfx: hike.tail.slice(1), lData: payload) brVtx.bVid[nibble] = vid db.setVtxAndKey(brVid, brVtx) db.setVtxAndKey(vid, vtx) okHike.legs.add Leg(wp: VidVtxPair(vtx: brVtx, vid: brVid), nibble: nibble) okHike.legs.add Leg(wp: VidVtxPair(vtx: vtx, vid: vid), nibble: -1) ok okHike proc topIsEmptyAddLeaf( db: AristoDbRef; # Database, top layer hike: Hike; # No path legs rootVtx: VertexRef; # Root vertex payload: PayloadRef; # Leaf data payload ): Result[Hike,AristoError] = ## Append a `Leaf` vertex derived from the argument `payload` after the ## argument vertex `rootVtx` and append both the empty arguent `hike`. if rootVtx.vType == Branch: let nibble = hike.tail[0].int8 if rootVtx.bVid[nibble].isValid: return err(MergeRootBranchLinkBusy) # Clear Merkle hashes (aka hash keys) unless proof mode if db.pPrf.len == 0: db.clearMerkleKeys(hike, hike.root) elif hike.root in db.pPrf: return err(MergeBranchProofModeLock) let leafVid = db.vidFetch(pristine = true) leafVtx = VertexRef( vType: Leaf, lPfx: hike.tail.slice(1), lData: payload) rootVtx.bVid[nibble] = leafVid db.setVtxAndKey(hike.root, rootVtx) db.setVtxAndKey(leafVid, leafVtx) return ok Hike( root: hike.root, legs: @[Leg(wp: VidVtxPair(vtx: rootVtx, vid: hike.root), nibble: nibble), Leg(wp: VidVtxPair(vtx: leafVtx, vid: leafVid), nibble: -1)]) db.insertBranch(hike, hike.root, rootVtx, payload) proc updatePayload( db: AristoDbRef; # Database, top layer hike: Hike; # No path legs leafTie: LeafTie; # Leaf item to add to the database payload: PayloadRef; # Payload value ): Result[Hike,AristoError] = ## Update leaf vertex if payloads differ let leafLeg = hike.legs[^1] # Update payloads if they differ if leafLeg.wp.vtx.lData != payload: # Update vertex and hike let vid = leafLeg.wp.vid vtx = VertexRef( vType: Leaf, lPfx: leafLeg.wp.vtx.lPfx, lData: payload) var hike = hike hike.legs[^1].wp.vtx = vtx # Modify top level cache db.setVtxAndKey(vid, vtx) db.top.final.lTab[leafTie] = vid db.clearMerkleKeys(hike, vid) ok hike elif db.layersGetVtx(leafLeg.wp.vid).isErr: err(MergeLeafPathOnBackendAlready) else: err(MergeLeafPathCachedAlready) proc registerStorageRootAccount( db: AristoDbRef; # Database, top layer stoRoot: VertexID; # Storage root ID accPath: PathID; # Needed for accounts payload ): Result[void,AristoError] = ## Verify that the `stoRoot` argument is properly referred to by the ## account data (if any) implied to by the `accPath` argument. ## # Verify storage root and account path if not stoRoot.isValid: return err(MergeRootMissing) if not accPath.isValid: return err(MergeAccPathMissing) # Check whether the account is marked for re-hash, already let lty = LeafTie(root: VertexID(1), path: accPath) if db.lTab.hasKey lty: return ok() # Get account leaf with account data let hike = lty.hikeUp(db).valueOr: return err(MergeAccUnaccessible) let wp = hike.legs[^1].wp if wp.vtx.vType != Leaf: return err(MergeAccPathWithoutLeaf) if wp.vtx.lData.pType != AccountData: return ok() # nothing to do # Need to flag for re-hash let stoID = wp.vtx.lData.account.storageID if stoID.isValid and stoID != stoRoot: return err(MergeAccWrongStorageRoot) # Clear Merkle keys and store leaf record for w in hike.legs.mapIt(it.wp.vid): db.nullifyKey w db.top.final.lTab[lty] = wp.vid ok() # ------------------------------------------------------------------------------ # Private functions: add Merkle proof node # ------------------------------------------------------------------------------ proc mergeNodeImpl( db: AristoDbRef; # Database, top layer hashKey: HashKey; # Merkel hash of node (or so) node: NodeRef; # Node derived from RLP representation rootVid: VertexID; # Current sub-trie ): Result[void,AristoError] = ## The function merges the argument hash key `lid` as expanded from the ## node RLP representation into the `Aristo Trie` database. The vertex is ## split off from the node and stored separately. So are the Merkle hashes. ## The vertex is labelled `locked`. ## ## The `node` argument is *not* checked, whether the vertex IDs have been ## allocated, already. If the node comes straight from the `decode()` RLP ## decoder as expected, these vertex IDs will be all zero. ## ## This function expects that the parent for the argument node has already ## been installed, i.e. the top layer cache mapping ## ## pAmk: {HashKey} -> {{VertexID}} ## ## has a result for the argument `node`. Also, the invers top layer cache ## mapping ## ## sTab: {VertexID} -> {VertexRef} ## ## has no result for all images of the argument `node` under `pAmk`: ## # Check for error after RLP decoding doAssert node.error == AristoError(0) if not rootVid.isValid: return err(MergeRootKeyInvalid) # Verify `hashKey` if not hashKey.isValid: return err(MergeHashKeyInvalid) # Make sure that the `vid<->hashLbl` reverse mapping has been cached, # already. This is provided for if the `nodes` are processed in the right # order `root->.. ->leaf`. let hashLbl = HashLabel(root: rootVid, key: hashKey) vids = db.layersGetLebalOrVoid(hashLbl).toSeq isRoot = rootVid in vids if vids.len == 0: return err(MergeRevVidMustHaveBeenCached) if isRoot and 1 < vids.len: # There can only be one root. return err(MergeHashKeyRevLookUpGarbled) # Use the first vertex ID from the `vis` list as representant for all others let lbl = db.layersGetLabelOrVoid vids[0] if lbl == hashLbl: if db.layersGetVtx(vids[0]).isOk: for n in 1 ..< vids.len: if db.layersGetVtx(vids[n]).isErr: return err(MergeHashKeyRevLookUpGarbled) # This is tyically considered OK return err(MergeHashKeyCachedAlready) # Otherwise proceed elif lbl.isValid: # Different key assigned => error return err(MergeHashKeyDiffersFromCached) # While the vertex referred to by `vids[0]` does not exists in the top layer # cache it may well be in some lower layers or the backend. This typically # happens for the root node. var (vtx, hasVtx) = block: let vty = db.getVtx vids[0] if vty.isValid: (vty, true) else: (node.to(VertexRef), false) # Verify that all `vids` entries are similar for n in 1 ..< vids.len: let w = vids[n] if lbl != db.layersGetLabelOrVoid(w) or db.layersGetVtx(w).isOk: return err(MergeHashKeyRevLookUpGarbled) if not hasVtx: # Prefer existing node which has all links available, already. let u = db.getVtx w if u.isValid: (vtx, hasVtx) = (u, true) # The `vertexID <-> hashLabel` mappings need to be set up now (if any) case node.vType: of Leaf: discard of Extension: if node.key[0].isValid: let eLbl = HashLabel(root: rootVid, key: node.key[0]) if not hasVtx: # Brand new reverse lookup link for this vertex vtx.eVid = db.vidFetch db.layersPutLabel(vtx.eVid, eLbl) elif not vtx.eVid.isValid: return err(MergeNodeVtxDiffersFromExisting) db.layersPutLabel(vtx.eVid, eLbl) of Branch: for n in 0..15: if node.key[n].isValid: let bLbl = HashLabel(root: rootVid, key: node.key[n]) if not hasVtx: # Brand new reverse lookup link for this vertex vtx.bVid[n] = db.vidFetch db.layersPutLabel(vtx.bVid[n], bLbl) elif not vtx.bVid[n].isValid: return err(MergeNodeVtxDiffersFromExisting) db.layersPutLabel(vtx.bVid[n], bLbl) for w in vids: db.top.final.pPrf.incl w if not hasVtx or db.getKey(w) != hashKey: db.layersPutVtx(w, vtx.dup) ok() # ------------------------------------------------------------------------------ # Public functions # ------------------------------------------------------------------------------ proc merge*( db: AristoDbRef; # Database, top layer leafTie: LeafTie; # Leaf item to add to the database payload: PayloadRef; # Payload value accPath: PathID; # Needed for accounts payload ): Result[Hike,AristoError] = ## Merge the argument `leafTie` key-value-pair into the top level vertex ## table of the database `db`. The field `path` of the `leafTie` argument is ## used to index the leaf vertex on the `Patricia Trie`. The field `payload` ## is stored with the leaf vertex in the database unless the leaf vertex ## exists already. ## ## For `payload.root` vertex IDs with number at least `LEAST_FREE_VID`, the ## sub-tree generated by `payload.root` is considered a storage root linked ## to an account leaf referred to by a valid `accPath` (i.e. different from ## `VOID_PATH_ID`.) In that case, an account must exists. If there is payload ## of type `accountData`, its `storageID` must be unset or equal to the ## `payload.root` vertex ID. ## # Check whether the leaf is on the database and payloads match block: let vid = db.lTab.getOrVoid leafTie if vid.isValid: let vtx = db.getVtx vid if vtx.isValid and vtx.lData == payload: return err(MergeLeafPathCachedAlready) if LEAST_FREE_VID <= leafTie.root.distinctBase: ? db.registerStorageRootAccount(leafTie.root, accPath) elif not leafTie.root.isValid: return err(MergeRootMissing) let hike = leafTie.hikeUp(db).to(Hike) var okHike: Hike if 0 < hike.legs.len: case hike.legs[^1].wp.vtx.vType: of Branch: okHike = ? db.topIsBranchAddLeaf(hike, payload) of Leaf: if 0 < hike.tail.len: # `Leaf` vertex problem? return err(MergeLeafGarbledHike) okHike = ? db.updatePayload(hike, leafTie, payload) of Extension: okHike = ? db.topIsExtAddLeaf(hike, payload) else: # Empty hike let rootVtx = db.getVtx hike.root if rootVtx.isValid: okHike = ? db.topIsEmptyAddLeaf(hike,rootVtx, payload) else: # Bootstrap for existing root ID let wp = VidVtxPair( vid: hike.root, vtx: VertexRef( vType: Leaf, lPfx: leafTie.path.to(NibblesSeq), lData: payload)) db.setVtxAndKey(wp.vid, wp.vtx) okHike = Hike(root: wp.vid, legs: @[Leg(wp: wp, nibble: -1)]) # Double check the result until the code is more reliable block: let rc = okHike.to(NibblesSeq).pathToTag if rc.isErr or rc.value != leafTie.path: return err(MergeAssemblyFailed) # Ooops # Update leaf acccess cache db.top.final.lTab[leafTie] = okHike.legs[^1].wp.vid ok okHike proc merge*( db: AristoDbRef; # Database, top layer root: VertexID; # MPT state root path: openArray[byte]; # Even nibbled byte path payload: PayloadRef; # Payload value accPath: PathID; # Needed for accounts payload ): Result[bool,AristoError] = ## Variant of `merge()` for `(root,path)` arguments instead of a `LeafTie` ## object. let lty = LeafTie(root: root, path: ? path.pathToTag) db.merge(lty, payload, accPath).to(typeof result) proc merge*( db: AristoDbRef; # Database, top layer path: openArray[byte]; # Even nibbled byte path payload: PayloadRef; # Payload value ): Result[bool,AristoError] = ## Variant of `merge()` for `(VertexID(1),path)` arguments instead of a ## `LeafTie` object. let lty = LeafTie(root: VertexID(1), path: ? path.pathToTag) db.merge(lty, payload, VOID_PATH_ID).to(typeof result) proc merge*( db: AristoDbRef; # Database, top layer root: VertexID; # MPT state root path: openArray[byte]; # Leaf item to add to the database data: openArray[byte]; # Raw data payload value accPath: PathID; # Needed for accounts payload ): Result[bool,AristoError] = ## Variant of `merge()` for `(root,path)` arguments instead of a `LeafTie`. ## The argument `data` is stored as-is as a `RawData` payload value. let pyl = PayloadRef(pType: RawData, rawBlob: @data) db.merge(root, path, pyl, accPath) proc merge*( db: AristoDbRef; # Database, top layer path: openArray[byte]; # Leaf item to add to the database data: openArray[byte]; # Raw data payload value ): Result[bool,AristoError] = ## Variant of `merge()` for `(VertexID(1),path)` arguments instead of a ## `LeafTie`. The argument `data` is stored as-is as a `RawData` payload ## value. let pyl = PayloadRef(pType: RawData, rawBlob: @data) db.merge(VertexID(1), path, pyl, VOID_PATH_ID) proc merge*( db: AristoDbRef; # Database, top layer leaf: LeafTiePayload; # Leaf item to add to the database accPath: PathID; # Needed for accounts payload ): Result[bool,AristoError] = ## Variant of `merge()`. This function will not indicate if the leaf ## was cached, already. db.merge(leaf.leafTie, leaf.payload, accPath).to(typeof result) proc merge*( db: AristoDbRef; # Database, top layer leaf: LeafTiePayload; # Leaf item to add to the database ): Result[bool,AristoError] = ## Variant of `merge()`, shortcut for `db.merge(leaf, VOID_PATH_ID)`. Note ## that this function fails unless `leaf.root == VertexID(1)`. db.merge(leaf.leafTie, leaf.payload, VOID_PATH_ID).to(typeof result) # --------------------- proc merge*( db: AristoDbRef; # Database, top layer proof: openArray[SnapProof]; # RLP encoded node records rootVid: VertexID; # Current sub-trie ): tuple[merged: int, dups: int, error: AristoError] {.gcsafe, raises: [RlpError].} = ## The function merges the argument `proof` list of RLP encoded node records ## into the `Aristo Trie` database. This function is intended to be used with ## the proof nodes as returened by `snap/1` messages. ## proc update( seen: var Table[HashKey,NodeRef]; todo: var KeyedQueueNV[NodeRef]; key: HashKey; ) {.gcsafe, raises: [RlpError].} = ## Check for embedded nodes, i.e. fully encoded node instead of a hash if key.isValid and key.len < 32: let lid = @key.digestTo(HashKey) if not seen.hasKey lid: let node = @key.decode(NodeRef) discard todo.append node seen[lid] = node if not rootVid.isValid: return (0,0,MergeRootVidInvalid) let rootKey = db.getKey rootVid if not rootKey.isValid: return (0,0,MergeRootKeyInvalid) # Expand and collect hash keys and nodes var nodeTab: Table[HashKey,NodeRef] for w in proof: let key = w.Blob.digestTo(HashKey) node = rlp.decode(w.Blob,NodeRef) if node.error != AristoError(0): return (0,0,node.error) nodeTab[key] = node # Check for embedded nodes, i.e. fully encoded node instead of a hash var embNodes: KeyedQueueNV[NodeRef] discard embNodes.append node while true: let node = embNodes.shift.valueOr: break case node.vType: of Leaf: discard of Branch: for n in 0 .. 15: nodeTab.update(embNodes, node.key[n]) of Extension: nodeTab.update(embNodes, node.key[0]) # Create a table with back links var backLink: Table[HashKey,HashKey] blindNodes: HashSet[HashKey] for (key,node) in nodeTab.pairs: case node.vType: of Leaf: blindNodes.incl key of Extension: if nodeTab.hasKey node.key[0]: backLink[node.key[0]] = key else: blindNodes.incl key of Branch: var isBlind = true for n in 0 .. 15: if nodeTab.hasKey node.key[n]: isBlind = false backLink[node.key[n]] = key if isBlind: blindNodes.incl key # Run over blind nodes and build chains from a blind/bottom level node up # to the root node. Select only chains that end up at the pre-defined root # node. var chains: seq[seq[HashKey]] for w in blindNodes: # Build a chain of nodes up to the root node var chain: seq[HashKey] nodeKey = w while nodeKey.isValid and nodeTab.hasKey nodeKey: chain.add nodeKey nodeKey = backLink.getOrVoid nodeKey if 0 < chain.len and chain[^1] == rootKey: chains.add chain # Make sure that the reverse lookup for the root vertex label is available. block: let lbl = HashLabel(root: rootVid, key: rootKey) vids = db.layersGetLebalOrVoid lbl if not vids.isValid: db.layersPutlabel(rootVid, lbl) # Process over chains in reverse mode starting with the root node. This # allows the algorithm to find existing nodes on the backend. var seen: HashSet[HashKey] (merged, dups) = (0, 0) # Process the root ID which is common to all chains for chain in chains: for key in chain.reversed: if key notin seen: seen.incl key let rc = db.mergeNodeImpl(key, nodeTab.getOrVoid key, rootVid) if rc.isOK: merged.inc elif rc.error == MergeHashKeyCachedAlready: dups.inc else: return (merged, dups, rc.error) (merged, dups, AristoError(0)) proc merge*( db: AristoDbRef; # Database, top layer rootKey: Hash256; # Merkle hash for root rootVid = VertexID(0) # Optionally, force root vertex ID ): Result[VertexID,AristoError] = ## Set up a `rootKey` associated with a vertex ID. ## ## If argument `rootVid` is unset (defaults to `VertexID(0)`) then the main ## trie is tested for `VertexID(1)`. If assigned with a different Merkle key ## already, a new vertex ID is created and the argument root key is assigned ## to this vertex ID. ## ## If the argument `rootVid` is set (to a value different from `VertexID(0)`), ## then a sub-trie with root `rootVid` is checked for. If it exists with a ## diffent root key assigned, then an error is returned. Otherwise a new ## vertex ID is created and the argument root key is assigned. ## ## Upon successful return, the vertex ID assigned to the root key is returned. ## if not rootKey.isValid: return err(MergeRootKeyInvalid) let rootLink = rootKey.to(HashKey) if rootVid.isValid and rootVid != VertexID(1): let key = db.getKey rootVid if key.to(Hash256) == rootKey: return ok rootVid if not key.isValid: db.layersPutLabel(rootVid, HashLabel(root: rootVid, key: rootLink)) return ok rootVid else: let key = db.getKey VertexID(1) if key.to(Hash256) == rootKey: return ok VertexID(1) # Otherwise assign unless valid if not key.isValid: db.layersPutLabel(VertexID(1),HashLabel(root: VertexID(1), key: rootLink)) return ok VertexID(1) # Create and assign a new root key if not rootVid.isValid: let vid = db.vidFetch db.layersPutLabel(vid, HashLabel(root: vid, key: rootLink)) return ok vid err(MergeRootKeyDiffersForVid) # ------------------------------------------------------------------------------ # End # ------------------------------------------------------------------------------